
contributed articles

february 2010 | vol. 53 | no. 2 | communications of the acm 155

doi: 10.1145/1646353.1646392

by Vijay K. Gurbani, Anita Garvert, and
James D. Herbsleb

We define c o r p o r at e o p e n s o u rc e (CO S) as applying
the precepts and methodologies prevalent in the
open source development community for creating
industrial-strength software projects in a corporation
for internal use. It may seem that open source style
development - using informal processes, voluntary
assignment to tasks, and having few financial
incentives - may not be a good match for commercial
environments. Our ongoing work, however,
demonstrates that under the right circumstances,
corporations can benefit from open source
development techniques. We present two approaches
to managing COS projects, and expand in detail on
one of them. Our results indicate that open source
approaches require significant adaptation to succeed
in commercial settings. In particular, they require
substantial support from business divisions within a
corporation to successfully leverage the shared asset.

Our ongoing research has attempt-
ed to determine whether corporations
can effectively leverage the open source
development model to create and man-
age software projects inside the corpo-
rate domain.3,4 We have observed how
the precepts and methodologies of the
open source development had to be
adapted in order to create commercial
grade software. In particular changes
are required in order to accommodate
a market-driven schedule and feature
decisions that are not wholly amenable
to an open source development ap-
proach. Our contributions in this ar-
ticle include describing two methods
to effectively manage COS assets: an
Infrastructure-based COS model, and a
Project-specific COS model. We report
experiences with the management as-
pects of the latter COS model, which
includes our findings that this model
requires a greater amount of support
to get a new business division on-
board when compared to the minimal
support provided by traditional open
source projects. However, the benefits
of Project-specific COS outweigh the
costs once the business division is fully
on-board: the development costs are
amortized over the number of divisions
using the common asset, and the asset
itself benefits from contributions from
the expanded use.

Open source practices and tools
have proven potential to overcome
many of the well-known difficulties of
geographically distributed software
development,5 and to allow widely dis-
tributed users of software to add fea-
tures and functionality they want with
a minimum of conflict and manage-
ment overhead.6

Dinkelacker et al.1 discuss Progres-
sive Open Source as a set of tools and
techniques for a corporation to host
multiple open source projects within
a company and between third parties.
In the context of their work, our work
on COS3,4 corresponds to and furthers
their work on what is referred to as “In-
ner Source” in their paper.

Our previous work3,4 attempted to
determine whether open source tools

Managing a
Corporate
Open Source
Software
Asset

156 communications of the acm | february 2010 | vol. 53 | no. 2

contributed articles

Phase 1: Initial Development. The
initial software was developed by one
of the co-authors of this article (vkg) at
Alcatel-Lucent by closely following the
work progressing in the IETF SIP work-
ing group. At this time, the develop-
ment was mainly an effort lead by the
author of the code and an additional
developer. The author was in close
touch with the work progressing in the
IETF by contributing to and deriving a
benefit from the discussions about the
protocol. Once the code had enough
features in it, it was taken to a number
of interoperability events to ensure its
compliance to the published specifica-
tion7 as well as other implementations.

Phase 2: Ad-hoc Partners. As the
code grew stable and achieved feature
parity against the functionality speci-
fied in the specification, the author
started to distribute the binary to a wid-
er audience inside the company. An in-
ternal Web site advertised new binary
releases of the server to download and
experiment with. As internal interest in
the server grew, the capabilities of the
server were demonstrated by closely
partnering in an opportunistic way
with select groups. For instance, the
author extended the programmabil-
ity of the server by providing an event-
based framework.

Phase 3: User-initiated Change Re-
quests. Gradually, the server moved
beyond a research-only project and was
productized as part of the business di-
vision the author worked for. Initially,
even though select groups within the
company had access to the source code,
there weren’t any contributions from
them beyond the users reporting their
experience to the author. Most inter-
nal users were simply downloading the
compiled version of the server and us-
ing it for their work. Expanding the class
of users in this way created a positive
feedback loop leading to the implemen-
tation of new features these users need-
ed. The author encouraged other users
within the company to use the software
and report feedback and wishes for new
features. This communication was con-
ducted in an ad-hoc fashion, primarily
over email and an updated Web page.
Requests for new features were ordered
according to the business needs of the
group productizing the server and the
research interests of the author (often
time, luckily, these coincided).

and practices are a good fit for devel-
oping commercial-grade software es-
pecially in the light of the differences
between the two camps: open source
development is more iterative in na-
ture when compared to the staged
method of software development prac-
ticed at many corporations; the incen-
tive structure between the two varies,
as does the motivation factor; com-
mercial software is usually character-
ized by process methodologies (CMMI,
ISO, TL9000, among others), that are
typically absent in open source devel-
opment.. We reached the conclusion
that certain commercial projects can
indeed benefit from open source devel-
opment methodology, especially those
projects where:

a technology is needed by several ˲˲

product groups (hence there is reason
to pool resources),

the technology is relatively immature ˲˲

so that requirements and features are
not fully known at the outset (so there
is a need to evolve continuously),

product groups have different needs ˲˲

and specific expertise in customizing
the software for their needs (so every-
one benefits from the contributions of
each group), and

the initial product has a sound, mod-˲˲

ular architecture (so that it is feasible
to merge all the diverse changes into a
single development branch).

Furthering our previous work, the
discussion in this article presents a
management view of maintaining a COS
asset. We discuss project management
and planning aspects that are intrinsic
to projects managed in this style.

Project Description
The specific software used in our case
study is a telecommunication-signal-
ing server that implements the Inter-
net Engineering Task Force (IETF)
Session Initiation Protocol (SIP7). SIP
is a text-based Internet telephony sig-
naling protocol to establish, maintain,
and tear down multi-media sessions
on the Internet. The development of
the project evolved in four phases, mir-
roring its evolution from a research-on-
ly project to a corporatewide, common
and reusable asset. A quick overview
of the phases is provided next; inter-
ested readers are directed to for more
details.3

As SIP continued to gain industry
adherents and as Internet telephony
became more important, the server
was viewed as a critical resource by
many groups; the server’s source code
was studied extensively by other groups
within the corporation. Requests start-
ed to arrive on evolving the server to
serve as a framework for many SIP-re-
lated groups within the company.

Phase 4: Establishing a COS Project.
About the same time that requests for
product-specific changes began to ac-
celerate, others within the company
started to contribute code and ideas
back to the author. The stage was set to
enter the traditional open source devel-
opment model, albeit within an indus-
trial setting. The author of the original
code assumed the role of a “benevolent
dictator” controlling the code base to
ensure that the contributions coming in
and features that other groups were pro-
posing to build into the code matched
the architectural principles of the soft-
ware. The author re-factored major por-
tions of the server code to create a trans-
action library that could be used by any
project within the company.

It is important to point out that in
corporate software development, each
project has an affinity for a certain set
of tools.3 The set of contributors now
adding features to the code were ac-
customed to their organization’s de-
velopment environment. Thus, some
organizations took a copy of the source
code archive and replicated it in their
local software environment to closely
model what the developers in that orga-
nization were accustomed to. Of course,
since none of the organizations used
the same source control software as the
author, the source files were put under
the source code control system of that
particular organization. It was at this
time that the concept of an indepen-
dent and common source code reposi-
tory was born. An open source group
was formally created to co-ordinate the
independent and common source code
repository. This group, the Common SIP
Stack (CSS) group, was headed by anoth-
er co-author of this paper (agarvert).

The goal of the CSS group was two-
fold: one, maintain an independent
and common source code repository
such that all projects within the com-
pany take their deliverables from the
CSS group. This was not an easy task,

contributed articles

february 2010 | vol. 53 | no. 2 | communications of the acm 157

and the reasons are enumerated.3 The
second goal was to evangelize the tech-
nology and the implementation by cre-
ating awareness of the resource within
the company. The CSS group acts as a
one-stop shop for all SIP needs that any
project within the company may need.
It was funded by multiple business di-
visions within the company and had a
dedicated support structure.

Managing a COS Asset
There are two models for a COS program:
in the Infrastructure-based COS model,
the corporation provides the critical
infrastructure (Web servers, download
accounts, mailing lists, code archives,
wiki-tools, etc.) that allows interested
developers to host individual software
projects on the infrastructure, much like
the SourceForge system, which provides
hosting capabilities for communities de-
veloping open source software. Individ-
ual developers who choose to make use
of the infrastructure determine the level
of support they are willing to provide to
interested users of the software package.
This model has been used successfully
to provide discrete software packages
(C/C++ compilers, shells, utilities) to the
greater research and development com-
munity in a company (see Dykstra et al.2
and http://www.bell-labs.com/project/
wwexptools.) Dinkelacker’s1 “Corporate
Source” program is another example of
this model.

In the Project-specific COS model,
an advanced technology group, or a re-

search group funded by other business
divisions in a corporation takes over a
critical resource and makes it available
for the larger audience. This model is
appropriate when the software is more
than a tool and instead is a primary
technology of the company, is tied to
revenue generating products for mul-
tiple business divisions, the technolo-
gy is relatively immature and evolving,
and when the cost of redevelopment
outweighs the cost of commonality.
This is the more challenging model
and the focus of our work, which of-
fers evidence that Project-specific COS
provides a viable development model
to manage overall development cost,
provide the needed software support
structure, and make effective use of
geographically and organizationally di-
verse pool of expertise.

Roles and Responsibilities
To manage a COS asset, a support struc-
ture (“core team”) must be put into
place. Our work3 mentions this core
team, but did not touch on the specific
roles and responsibilities of the team.
Here, we identify the roles and respon-
sibilities within the core team and then
look at the work flow inherent in such a
system. Table 1 shows a comparison of
the Project-specific COS roles to equiv-
alent roles in traditional open source
projects as enumerated.8

The first role is that of a liaison. The
liaison has overall responsibility for
the open source product, manages all

activities performed by the core team,
and interfaces with each business divi-
sion for new work requests. The liaison
works with the chief architect (defined
next) to review and prioritize the feature
list, serves as the advocate for internally
generated development requests, and
communicates planning information to
the rest of the corporation. The liaison
is the marketing manager for the asset,
encouraging new projects to integrate
the asset, and encouraging software
contributions, even from non-users.
Since the Project-specific COS model
is highly unconventional, a significant
amount of time is spent familiarizing
the business divisions with the part-
nership model and securing a commit-
ment for their contribution to the asset
and ensuring the support structure is in
place. The liaison is also responsible for
establishing the development and deliv-
ery environment for the software.

The liaison works closely with a
chief architect, ideally someone who
would have founded the asset and put
considerable energy in creating an ini-
tial version of the software. This per-
son typically should possess not only a
good software engineering background
but also an industry overview of how to
position the technology to customers
and how is the technology itself evolv-
ing (through standardization efforts
like IETF or grass-root community
efforts like the Java Community Pro-
cess.) Management level support for
the chief architect is essential as the
architect is the final arbiter on what
features should go into the software
asset while preserving the overall ar-
chitectural integrity. This role is analo-
gous to the one played by a “benevolent
dictator” in traditional open source de-
velopment. An interesting dichotomy
between traditional open source and
COS manifests itself in this role: unlike
traditional open source, the benevo-
lent dictator cannot be concerned sole-
ly with a personal vision when making
decisions about what features go in and
how the software evolves. In a corpo-
rate setting, those features that attract
the most external paying customers
will percolate to the top of the priority
list. The benevolent dictator can still
remain a powerful force for maintain-
ing the conceptual and architectural
integrity of the software, but business
necessities must be respected as well.

 Table I: Comparison of traditional open source and Project-specific COS models.

Traditional Open Source
Model

Project-specific COS Model

Social and political
infrastructure

• �Benevolent dictator and
trusted developers

• Release manager

• No explicit role

• Chief architect and liaison

• �Construction, verification and load bring-
up engineers

• Project manager

Decision making (vision,
evolution, etc.)

Load building

Project management

Technical infrastructure

• Release owner

• No explicit role
• �Volunteer contributors,

trusted developers
• Ad-hoc

• �Release-, delivery-, and feature- advocate

• Feature advocate
• �Core team members and business division

contributors
• Driven by business divisions

Packaging, releasing and
cross-feature coordination

Feature design and review

Code development

Work flow

Funding • Donations, dual-licensing • �Driven by business divisions in general,
sponsoring division in particular

Formal support for end users • Usually minimal • Extensive

Licensing • GPL, BSD-license scheme • Dictated by corporate policy

158 communications of the acm | february 2010 | vol. 53 | no. 2

contributed articles

Delivery advocates assisted in the sur-
prisingly difficult task of build inte-
gration to the business division. Build
integration consists of working closely
with the new business division to fit the
common asset with the peculiarities of
the build environment of the business
division. Each business division has
specific tools, processes, collected lore,
and compilation dependencies that had
to be taken in consideration to reuse the
shared asset in that business division.
Furthermore, the delivery advocate
worked with the particular business di-
vision to ensure that its contributions to
the common asset were assimilated in
a manner conducive to the architecture
of the common asset.

A member of the core team was also
assigned as feature advocate to see a
particular feature to completion. In
this role, the feature advocate approves
design documents, performs code in-
spections, and ensures that the change
aligns with the overall software ar-
chitecture. The release-, delivery- and
feature-advocates collectively manage
the contributions from other business
divisions. These contributions, when
built into the official product, became
the responsibility of the core team, cre-
ating a compelling reason to get it right
the first time.

Work Flow
Work requests, that is, requests from
business divisions for aid in using the
COS asset, requests from business di-
visions about supporting new features,
bug fixes, etc., arrived from a multiplic-
ity of sources. Each business division
has idiosyncratic processes for feature
creation and prioritization that must
be accommodated in the Project-spe-
cific COS model. These work requests
were managed as described next.

A Web-based work request process
was put in place. All business divisions
that required additional work to the
shared asset inserted a request into a
general list; those requests with some
impact were then moved to a candi-
date list, managed by the project man-
ager. Additional feature requests were
also created by the core team based on
the knowledge of upcoming changes
driven by standardization efforts,
software architectural limitations, or
other requirements such as security
and performance. These requests were

The core team must also have con-
struction, verification, and load bring-
up engineers. These members interface
directly with the business division using
the asset to provide support for release
management tasks such as compila-
tion, load bring-up and verification. In
addition, they also perform a variety of
other support tasks such as maintain-
ing the common asset’s software and
tool development environment, docu-
mentation, authoring release notes,
and Web design. The minimization of
this effort is essential (for example, we
reused existing infrastructure as much
as possible but kept the processes light-
weight and automated.)

A full-time project manager is crucial
to assist in release and load planning;
to manage the tools used to define and
track features; and to ensure process
compliance, which are often endemic
to the corporate world. Rounding up
the core team are sets of development
engineers. However, before we outline
this role in detail, a detour is necessary
to discuss the organizational dynam-
ics of a COS asset, as they have a direct
bearing on the role played by the devel-
opment engineers.

A guaranteed pre-requisite to the
Project-specific COS model is the iden-
tification of a sponsoring business divi-
sion. The critical need for such a spon-
sor was detected repeatedly in our work
and appears to be a recurring theme:
During Phases 1 and 2 of our work, the
business division that employed one of
the co-authors (vkg) acted as a sponsor
to what became a common asset with-
in that business division. In Phase 4 of
the project, the majority funding for
the common asset (the CSS group) was
contributed by a single business divi-
sion. While it may be possible to ini-
tially start with minimal set of friendly
users, a successful technology will
invariably require a larger, more orga-
nized sponsor. The core team belongs
organizationally to the sponsor, and
an equitable funding model will need
to be worked out between the sponsor
and other business divisions within
the corporation that are interested in
re-using the shared asset.

In our work, in a pattern we suspect
is typical, the asset started off as a re-
search project with a lead group that
saw a product opportunity. To mini-
mize the overall support cost, the lead

group contributed existing tools, sup-
port staff, processes, assistance and
leadership to the project. By selecting a
lead group with an existing infrastruc-
ture for project planning and software
development, and a willingness to
participate, only a very small invest-
ment was needed to establish the early
shared asset. This was a tremendous
advantage. The disadvantage, of course,
was that the common asset initially be-
came anchored within the lead group.
Load planning, code development, fea-
ture content, even system bring-up was
driven exclusively by the lead group.
Backing away from the lead group as
more users of the common asset were
identified took careful communication
and negotiation with the lead group.
That is why it is so necessary to pay ad-
equate attention at the onset to a long
term vision of a common and shared
software asset. This allows the weaning
away process from the lead group to oc-
cur as transparently as possible; as this
process succeeds, more business divi-
sions start to use and contribute to the
shared COS asset. Successful projects
will continue to cater to the exclusive
needs of the lead group while providing
the asset to other divisions within the
corporation that may not need the fea-
ture set championed by the lead group.

With the shared asset being used by
multiple divisions in a corporation, we
now revisit the role of the development
engineers. The core development team
is responsible for completion of full cy-
cle development tasks, including archi-
tecture, design and unit testing, under
the leadership of the liaison and work-
ing closely with the chief architect. One
member of the core development team
was tasked with a specific role of a re-
lease advocate to ensure that the code
changes for all features were submit-
ted on time, and kept track of all busi-
ness division-specific impacts for the
particular release. This role changed
periodically to allow all the entire core
team to benefit from the leadership
and management experience.

Certain key members of the develop-
ment team were assigned the specific
role of a business division delivery advo-
cate. Unlike a release advocate, delivery
advocates were assigned to a business
division that intended on using the
common asset but were new to the con-
cept of the Project-specific COS model.

contributed articles

february 2010 | vol. 53 | no. 2 | communications of the acm 159

added to the candidate list, which was
reviewed periodically (once a week) for
commonality, estimation and commit-
ment by the chief architect, the liaison,
key members of the development team,
and the project manager. At this time,
it was important to identify common
themes among the feature requests
from different divisions, and negotiate
with each business division to align on
a common solution.

As expected, the candidate list
would surpass the available resources.
The assignment of staff to each feature
was the responsibility of the liaison,
who contacted the staffing managers
within the business division request-
ing the feature. To avoid overwhelming
the core team, some members of which
were always needed for work that was
not funded by a specific business di-
vision, we needed a way to share the
work. We developed a workable solu-
tion: for substantial features half of the
development effort was borne by the di-
vision asking for the feature and the re-
maining half was the responsibility of
the sponsoring business division. This
rule was not followed strictly, as some
business divisions would contribute a
portion of their technical head count
to implement a feature, while others
would require the sponsoring busi-
ness division to allocate all resources.
Regardless, finding an equitable fund-
ing model for the feature between the
sponsor and the specific business divi-
sion occupies a substantial amount of
time of the liaison.

Conclusion
We have presented two techniques on
COS. The lightweight Infrastructure-
based COS model can be rapidly de-
ployed to reuse common software tools
across organization boundaries with
little or minimal managerial overhead.
By contrast, projects with certain char-
acteristics we describe may benefit
from the more involved Project-based
COS model.

Our work on the management of
Project-based COS has yielded two im-
portant insights: first, for such projects
to succeed, it is imperative that they
benefit from a large and organized
sponsoring business division within
the corporation that can act as a cham-
pion for the common asset. Second,
and perhaps the more important find-

ing is that formal support and owner-
ship required as the common asset is
integrated into products being created
by other business divisions cannot be
ignored. Unlike traditional open source
development where interested par-
ties simply download the source code,
compile it, and over time gain expertise
in it, Project-based COS leverages orga-
nizationally diverse staff to complete
features. Thus, those business divi-
sions with the highest integration of
the common asset will contribute the
largest effort, and in some cases fund a
portion of the core team. Furthermore,
because other business divisions in the
corporation view the common asset
as a core technology that they subse-
quently build into their products and
then sell to customers, the expecta-
tions from the sponsoring division are
much higher. Indeed, a certain amount
of hand-holding is required to get new
business divisions integrated into the
Project-based COS model to the point
that they become active users, and per-
haps even active contributors, of the
shared asset.�

References
	 1.	 Dinkelacker, J., Garg, P., Miller, R., and Nelson, D.

Progressive open source. In Proceedings of the
24th ACM International Conference on Software
Engineering, 2002, 177-184.

	 2.	 Dykstra, D., and Leto, K. NSBD and software
distribution. Dr. Dobb’s Journal, (Sept. 1998), 84-88.

 	3.	 Gurbani, V.K., Garvert, A., and Herbsleb, J.D. A case
study of a corporate open source development model.
Proceedings of the 28th ACM International Conference
on Software Engineering, 2006,,472-481.

	 4.	 Gurbani, V.K., Garvert, A., and Herbsleb, J.D. A
case study of open source tools and practices in a
commercial setting. Proceedings of 5th ACM Workshop
on Open Source Software Engineering, 2005, 1-6.

	 5.	 Herbsleb, J.D., and Mockus, A. An empirical study
of speed and communication in globally-distributed
software development. IEEE Transactions on
Software Engineering 29, 3, (2003), 1-14.

	 6.	 Mockus, A., Fielding, R., and Herbsleb, J.D. Two
case studies of open source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology 11, 3, (2002), 309-346.

	 7.	 Rosenberg J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley. M., and Schooler,
E. SIP: Session Initiation Protocol. IETF RFC 3261,
2002; http://www.ietf.org/rfc/rfc3261.

	 8.	 Fogel, K. Producing open source software: How to run
a successful free software project. O’Reilly Publishing,
October 2005.

Vijay K. Gurbani (vkg@bell-labs.com) is a distinguished
member of technical staff in the Enabling Computing
Technologies research domain at Bell Laboratories,
Alcatel-Lucent, Naperville, IL.

Anita Garvert (anita.garvert@wowway.com) is a former
technical manager at Alcatel-Lucent, Lisle, IL. She served
as the liaison for the COS asset.

James D. Herbsleb (jdh@cs.cmu.edu) is a professor of
Computer Science and director of the Software Industry
Center at Carnegie Mellon University, Pittsburgh, PA.

© 2010 acm 0001-0782/10/0200 $10.00

