
Metaphorical Representation in
Collaborative Software Engineering

James D. Herbsleb

Bell Laboratories, Lucent Technologies

263 Shuman Boulevard

Naperville, IL 60566

+16307131869

herbsleb@research.bell-labs.com
ABSTRACT
Finding a useful abstract representation is fundamental to
solving many difficult problems in software engineering.
In order to better understand how representations are
actually used in key collaborative software engineering
tasks, this empirical study examined all of the spoken
representations of soflware behavior in 9 domain analysis
sessions. It found that about 70% of them were
metaphorical, representing system behavior as physical
movement of objects, as perceptual processes, or in
anthropomorphic terms ascribing beliefs and desires to the
system. The pattern of use of these representations
indicates 1) that they were not merely temporary
placeholders, but rather their use persisted even when a
specialized and more formal vocabulary had been
developed, and 2) the metaphoric descriptions appear to
reflect actual use of metaphor, rather than just a choice of
vocabulary. The use of metaphor is explained in terms d
how well they serve human cognitive abilities and
collaborative needs. The predominance of metaphorical
representations in synchronous collaborative sessions
raises important issues about the possible misleading
effects of metaphorical thinking. It also raises questions
about the compatibility of the spoken representations with
other representations (e.g., diagrams, specification
languages) that trigger, and capture the results of, the
verbal collaborative work.

INTRODUCTION
It has long been observed informally, as well as in case
studies [24] and in interviews [36] that software engineers
frequently talk about software behavior in
anthropomorphic terms, e.g., in terms of what a
component “knows” or is “trying to do.” This strikes
many as sloppy and imprecise, hence undesirable.
Dijkstra [12] has gone so far as to suggest that computer
science faculty implement a system of fines to stamp it
out among their students, although he acknowledges this
would be very difficult to do.

Permission to make digital or hard copies of all or pert of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial edvan-
tage and that copies bear this notice end the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
WACC ‘99 Z/99 San Francisco, CA, USA
Q 1999 ACM l-581 13-070-9/99/0002...$5.00

The purpose of the empirical research reported here is to
begin systematically investigating the use of these sorts d
metaphorical representations in software engineering. E
in fact, their use is as pervasive as many believe, one
might wonder why this is so, since it is certainly not
taught explicitly as part of any standard software
engineering curriculum. As the remainder of this
introduction points out, prior research gives us good
reason to expect that metaphorical representations of
behavior,’ and anthropomorphic representations in
particular, have enormous advantages both for individual
cognition and for the distributed cognition that underlies
collaborative work. But pervasive use of metaphorical
representations would also raise serious questions about
the possible misleading effects of metaphorical thinking,
and about the possibility of errors being introduced by
virtue of the potential incompatibility of metaphorical
representations with other, more standard, representations
used in computer science.
The empirical study reported here is a content analysis of
all descriptions of software or system behavior that
occurred in nine domain analysis sessions. The objective
is to determine the frequency with which metaphorical
descriptions occurred, and to investigate several questions
about how and when they were used so as to begin to
understand the significance of the role they play. The
specific research questions are presented at the conclusion
of the introduction. The empirical methods are described
in Section 2, and the results in Section 3. The paper
concludes with a discussion in Section 4 of the potential
opportunities and dangers revealed by these findings, and
of new research questions raised.

Representations in Software Engineering
There am probably few who would dispute that
representations play a key role in problem solving.
Herbert Simon [31] may have given us the clearest
statement of the pivotal role of representations in
intellectual work when he claimed that “solving a

’ The terms “system behavior” and “software behavior”
will be used interchangeably, since all the software in
this study is embedded, and the behavior of the software
and the system are not easily separable.

117

problem simply means representing it so as to make the
solution transparent (p. 153).” The influence of different
types of representations on an individual’s ability to solve
a problem has been documented many times (e.g., [9,
211).
Cognitive processes of individuals
There have been a number of studies that have
investigated the representations and cognitive processes of
programmers. Several of these have emphasized the need
for abstract, integrative structures, such as plans [28] or
schemata [20] for achieving and maintaining a high-level
view of the developing program. Other studies have
documented the effects of using various types of lower
level representations such as notations [151 and visual
programming languages [171.
Some types of representations seem to have particular
advantages because they make use of specific, powerful,
cognitive abilities. An excellent example is visualization.
It is clearly not the case that all visual representations ate
useful for all purposes (e.g.., [16]), but when a
visualization matches a task well, the visual processing
capabilities of the brain allow a tremendous amount of
information to be conveyed in compact form which is
readily grasped. For example, software visualization
technologies (e.g., [l]) appear to be a significant aid to
understanding very large, complex software systems.

Representations and collaborative work
For collaborative soflware engineering, representations
must not only match and support the cognitive tasks d
individuals, they must support the “distributed
cognition” (e.g., [191) of the entire constellation of people
and artifacts that together produce a solution. This
imposes many additional requirements on representations,
such as their “openness” to viewing by more than one
person simultaneously and their ability to support the
sorts of exchanges and handoffs that occur among
individuals. Especially important is the support
representations provide fa establishing “common
ground” [6], i.e., the state that we agree on what we am
referring to, and know that we agree.
It has often been proposed that certain types of
representations used in soflware engineering have
advantages f@ collaborative work. Object-oriented (00)
representations, for example, have properties that am
theorized to facilitate communications among those
involved in collaborative development tasks [29], and
there is some evidence that use of 00 representations
reduces the need for clarification in the discussion d
design ideas [18].

Collections of representations
Most software engineering tasks are sufficiently complex
that many representations are used in concert. A wide
variety of types of diagrams, specification languages,
programming languages, and so on have evolved to meet
various needs. Much of the collaborative work is done in
the context of meetings, formal or informal, as the

participants discuss documents, diagrams, and so on, and
the issues they raise [26, 27, 341. This typically occurs
in many iterations, as ideas “move” from the more stable
media such as paper, whiteboard, or computer screen to
the transitory verbal medium of conversation, then back to
more stable media as issues are resolved. Much of the
crucial work occurs during these periods of discussion
when the primary representational medium is spoken
language. The properties of the specific types of
representations that are rendered in this verbal medium
can be expected to influence the course and the success of
the collaborative task as do the properties of other
representations. The ease and precision with which other
sorts of representations can be translated into verbal
representations, and with which conclusions represented
verbally can be translated into a more stable medium
would also be expected to have a substantial impact on
the process.
This section has focused on the critical role of
representations in software engineering. I turn now to a
discussion of certain types of metaphorical representations
and research that bears on their suitability for collaborative
software engineering tasks.

Metaphorical Representations
Metaphors are widely used to ,understand new or difficult
domains in terms of things already understood. They can
be very important and illuminating in bringing to light
important characteristics one might not otherwise be able
to express or even think about [2]. But they can also
shape thinking and discussion in ways that close elf
options and neglect critical aspects of the objects under
consideration [30]. This is particularly true CE
metaphors, as opposed to deliberate comparisons in the
form of analogy [14], since metaphors am often used
implicitly to establish a conceptual foundation for the
lesser-known domain.
Informal observation, case studies (e.g., [24]) and
interviews [36] all indicate that metaphorical language is
used in various software engineering tasks. For example,
communication between components or processes is
sometimes spoken of as if physical objects like “packets”
are sent, received, handed off, tom apart, damaged, or lost.
This is clearly a metaphorical characterization of the true
physical situation, but as metaphors go, it sticks fairly
close to the facts.
Other sorts of metaphor venture further from the literal. A
process may “look at” the contents of a message,
“recognize” a problem, “decide” to “take action.” Even
further from the literal are descriptions of what a process
“thinks” is happening, what it is “trying to do,” what
things it “knows” about and doesn’t “know” about, and
so on. These latter anthropomorphic metaphorical
expressions are examples of what is often called “naive
psychology.”

118

Naive psychology as a specific cognitive capability
There is considerable evidence that naive psychology is a
“special” sort of metaphor, in that it exploits a specific
cognitive capability that evolved as a result of natural
selection pressures favoring prehuman ancestors that were
able to navigate the social world more effectively than
their peers [5, 8, 22, 251. This particular type of social
reasoning ability emerges, without any special
instruction, in virtually all intact humans. In a course of
development which is increasingly well understood,
children develop fmt a “naYve physics” that supports
reasoning about physical objects and their movements.
Somewhat later, “naive psychology”, or “theory of mind”
[23] emerges, allowing them to reason in sophisticated
ways about people, based on what they infer a person’s
state of knowledge and motivation to be. It appears to
involve brain processes quite distinct from those used to
reason about behavior in physical terms [13,221.
Much is also understood about the mechanics of naive
psychology. It involves a particular mode of reasoning in
which behavior is explained in terms of the beliefs and
desires (or near-synonyms, such as “wants,”
“knowledge,” and so on) of the one whose behavior is
being explained (whom I’ll call the “behaver”) [5, 321.
For example, a typical explanation of why a developer
selected a particular data structure might invoke the
developer’s desire to perform certain manipulations on the
data, and a belief that this particular data structure would
allow efficient access to and storage of the data for these
manipulations. Explanations can, of course, be much
more elaborate, but they all tend to be cast in beliefs and
desires or their near-synonyms.
One of the important component skills that allows ntive
psychology to function is the ability to infer the behaver’s
current state of knowledge and current desires and what
further behavior these are likely to produce [ll, 231.
People are very skilled at such things as keeping track of
what information a behaver has been exposed to, i&ring
what the behaver must have known in order to have
per8ormed certain actions, and what a behaver must be
trying to do, given its behavior and current knowledge.

Naive psychology and software behavior
One of the fundamental challenges in software engineering
is the extreme complexity of software [3]. Many kinds af
artifacts are structurally complex, but there is little doubt
that compared to any other type of artifact ever created,
large computer programs (during execution) are by far the
most behaviorally complex. One might speculate then,
that a specific cognitive capacity that evolved in order to
deal with behavioral complexity might be a powerful tool
for understanding the behavior of software.
The characteristics of naive psychology am well-suited to
some kinds of tasks. It is a highly abstract
representational system. In saying, for example, that a
software component A “knows” about another component
B, the nature of the relationship is only very incompletely
specified. The statement implies merely that the behavior

of A may be in some way contingent on the function or
behavior of B. The nature of the contingency is
unspecified. Similarly, if A is said to “believe” that a
particular event has occurred, this statement implies that
A may behave differently than it would if A did not
“hold” this “belief” about the event. If, on the other
hand, A has no beliefs one way or the other about some
event, then A’s behavior cannot be (directly) contingent
on the event. Statements about desire are similarly
abstract. If we assert that A “wants” to communicate
with B, for example, we don’t know if A will actually
attempt to communicate with B, or if so, how, or with
what message, or with what success.
The component skills of someone competent in naive
psychological reasoning are also matched, at least
superficially, to many tasks in software engineering. In
designing or understanding a complex, multi-component
system, it is extremely important to be able to keep track
of what state each component is in, what it is “trying” to
do when its behavior causes a fault, what it “knows”
about the state of other components, what it “knows”
about various protocols, external entities, and so on. If
the skills of nafve psychology allow an engineer to keep
track of this sort of information with little effott, because
of a built-in capability, it would be advantageous indeed.
Another of the interesting properties about beliefs and
desires is that they are always about something. [4, lo].
In ascribing a belief p to behaver A, I am not saying
something only about A. Rather, I am asserting some
sort of relationship between A and the object of belief p.
So, for example, if I say that component A believes a
particular file is corrupted, this asserts something about
A’s current state, but also about a particular sort of
relationship that A has to the file. A description purely in
terms of A’s state (e.g., variable X has value ‘0’) does
not convey such information. Statements about what a
component knows, believes, is trying to achieve, and so
on are very compact, abstract expressions of potentially
very complex relationships that would be difficult to fully
express in other, non-anthropomorphic terminology.
Finally, naive psychological representations may be
particularly well-suited to collaborative tasks. The highly
developed cognitive capacity that underlies such
representations is virtually universally shared.
Collaborators can follow each other’s reasoning quickly,
with relatively little effort, and can rely on being
understood. Particularly in teams with diverse training
and experience, having some such representational system
for establishing common ground is essential for successful
collaboration [6 1.
I have argued in this introduction that metaphorical
representations, particularly naive psychological
representations, have properties that make them appealing
in some ways as a representational system for sothvare
behavior, both because of a match (albeit, perhaps a
superficial one) with some important tasks, and because
they make use of a specific, powerful, cognitive capability.

119

The specific research questions are presented in the next
section.

Research Questions
This research seeks to answer four basic questions about
the use of metaphorical representations of system behavior
in a collaborative software engineering task. Together,
the answers should give a good indication of how
extensively they are used, and whether the use is
superficial or is an essential feature of the intellectual
work. The first and most basic question is
1. How frequent are metaphorical descriptions of

behavior, as compared to other modes of
describing system behavior? Of the metaphorical
descriptions, how many use nake psychology?

The next question concerns how the naive psychology
representations are used. A “placeholder” hypothesis
would assert that naive psychology representations are
primarily temporary placeholders for literal descriptions.
Under this hypothesis, ndive psychology descriptions
would be relatively frequent in the early stages of analysis,
when there is the greatest need for placeholders for as-yet-
undetermined literal terminology. As the analysis
progresses and literal terms become increasingly available,
the proportion of naive psychology descriptions would
decrease relative to literal descriptions. If they do not,
then naive psychology presumably serves some other role
that continues to be important throughout the analysis.
More specifically, the question is
2. Does the proportion of na’ive psychology

descriptions decrease over the course of each
domain analysis?

The use of metaphorical vocabulary may reflect only a
choice of convenient words, without actually reflecting the
use of an underlying metaphorical representation. If this
is the case, one would expect to find the metaphorical
descriptions distributed more-or-less randomly throughout
the sessions. If, on the other hand, use of metaphorical
vocabulary actually reflects occasions when the
participants are using a metaphor for problem solving, one
would expect to see sequences of descriptions all drawn
from the same type of metaphor, shifting eventually as
other metaphors or literal descriptions are brought to bear.
Ifbehavior descriptions are not randomly distributed, but
rather tend to occur in same-metaphor sequences, this
would tend to indicate the “mere word choice” hypothesis
is false. The question to be addressed:
3. Do metaphorical representations tend to occur in

sequences, or is their use distributed randomly
throughout the sessions?

Finally, if the descriptions of software or system behavior
are actually making use of a specific cognitive system
specialized for social intelligence, then one might expect
to find other linguistic traces of the use of this specialized
system. In particular, one might expect to see the
software or system “personified,” i.e., spoken of as if it
were a person. There are many ways one might test fbr

evidence of personification. I elected to use a very simple,
straightforward, and conservative one. In each verb phrase
describing system behavior, if the word used to denote the
actor is clearly one typically associated with a person and
not a “thing,” this is a form of personification. So, for
example, the behavior description “I just loop through
the list” is clearly a personification, referring to the
software’s behavior as if the actor were a person (“I”).
The non-personified alternative, of course, would be “It
just loops . . .” The clearest evidence of personification is
when the actor is in the fast (I, me, we) or second (you)
person. Third person pronouns may or not represent
personifications, since “they” can refer to persons or
things, and “he” and “she” can by convention be used 6~
things (as when ships are referred to as “she”). Counting
the occurrences of first and second person .pronouns as
actors in behavioral descriptions of the software is a
simple, clear, and conservative way of searching ti
evidence of personification. If such occurrences are
frequent, then the total fi-equency of personifications must
be at least that great. So the research question is
4. How frequently is the subject of the software or

system behavior description rendered in the first
or second person?

METHOD
The empirical approach used in this study was a content
analysis of conversation during nine domain analysis
meetings.

Commonality Analysis Sessions
The data for this study were taken from sessions of a form
of collaborative domain analysis called commonality
analysis [35]. The commonality analysis process consists
of a series of facilitated sessions in which domain experts
collaboratively identify and express what is common
among all members of a family (called “commonalities”)
and what difI’ers from one member to another
(“variabilities”) as well as the range of values the
variabilities can assume (“parameters of variation”). At
the participants’ discretion, many forms of representation
are used in these sessions, including data-flow diagrams,
formal logic, fmite state machines, and so on. The final
document expressing the results of the analysis is in
English (rather than a formal notation), and is structured
in several sections listing the commonalities,
variabilities, and the parameters of variation.
Three series of commonality analysis meetings in a large
telecommunications company were selected for this study.
These analyses were conducted by groups of domain
experts, all of whom were quite experienced in the domain
to be analyzed, and a trained moderator, who was not a
domain expert. The moderators strove to capture, not
dictate, the ways in which the domain experts expressed
their ideas. We can assume, therefore, that the ways in
which these experts talked to each other reflect their
ordinary modes of talking and thinking. The basic task
in commonality analysis is to identib what is common
and what varies from family member to family member in

120

the domain, so that the full variety of family members can
be quickly constructed as needed. In the course of these
discussions, many descriptions of what existing and future
family members do and how they work were generated.
Commonality analyses typically involve at least a half
dozen sessions of 1-2 hours. Complex domains require
many more sessions. Three analyses were chosen for this
study. Signal1 was a very high-level analysis of the
domain of message-passing protocols in telephony. The
analysis team consisted of five domain experts at the
beginning. Two of them had worked together before, the
others had not. All were from different organizations
within the company. Two left the analysis task between
the “early” and “middle” sessions. Signal2 was another,
more detailed, analysis by the same three remaining team
members, conducted shortly after Signal1 ended. This
analysis covered a small portion of the domain in
Signall, but in much greater detail. I treated it as a
separate analysis because it was considered to be separate
by the participants and because it produced a separate
output.
The Revision analysis was a completely unrelated analysis
by a non-overlapping team from an organization not
represented in the Signal analyses. The task was a
revision of an already-completed analysis of switch
maintenance software, i.e., software that allows hardware
and software to be maintained or upgraded while the
switch is operating, ensuring it remains in a “safe”
condition. The purpose of this analysis was to address
change requests submitted by users of the original
analysis. The team had two members who remained
throughout, but was joined in the “middle” session by
two other domain experts whose skills were needed for a
time.
For each domain analysis, three sessions were chosen, one
to represent the early stages, one to represent the middle
stages, and one to represent the late stages. In the case d
Signal1 and Signal2, the early session was the very first
one in the analysis. The team had already been together
to receive domain analysis training, and the sessions had
a high content of analysis work. For the Revision
analysis, the early session was the second in the series,
since I was not able to videotape the first. In all cases,
the middle session was one that had equal numbers d
sessions before and afler it. The late session was one cf
the last 2-3 sessions in each analysis.
Trained and experienced moderators who were not domain
experts moderated all sessions. Signal1 and Signal2 had
the same moderator, Revision had a different moderator.
All sessions were videotaped, with the consent of the
participants. All descriptions of system (i.e., hardware
and/or software) behavior were transcribed. Each verb
phrase describing some action of the system was counted
as a separate behavior.

Each behavior was then categorized with respect to the
type of description (see Appendix A). The categories
WeI-CZ

1.

2.

3.

4.

5.

Specialized vocabulary (SV): literal (non-
metaphorical) descriptions that are accepted computer
science terms, such as call, assign, block, loop,
execute,parse, and so on. Also included were words
that were appropriated by the group and assigned
their own specialized meaning, as indicated by their
inclusion in a “dictionary” developed as a standard
part of the commonality analysis.
Physical movement (PM): descriptions that taken
literally indicate physical movement, such as get, go,
give, hand ofi come back, and so on. Also included
were words associated with physical causality, such
as have an effect, cause something, start, contain,
and do work.
Perceptual (P): descriptions that indicate simple
sensing of a condition or “looking” through
something, such as look, see, find, search, check.
Also included were words indicating simple,
“mechanical” responses to input, such as pick and
select.
Naive psychological (Npsy): descriptions that involve
beliefs or desires, such as want, tv, think, know,
seem, say, trust, use, give up. Also included were
other words that clearly indicated a naive
psychological view, such as following a rule (as
opposed to executing an algorithm), or remembering
what happened.
Other (0): descriptions that fell into none of the
above categories.

Note that no behavioral descriptions were included in the
analysis if they could be reasonably interpreted solely as
behaviors of people or groups of people. Only
descriptions of the behavior of the system were included.
So, for example, the sentence “We loop through the list
that’s in the specification” was included because clearly
the analyst is not “looping” through the list, the soflware
is. On the other hand, in “We want to loop through the
list” the “want” would be excluded since a reasonable
interpretation is that it is the analysts who “want.” The
soflware does the “looping,” however, so “loop” would
be included (coded as an SV type of description).
Determining whether the subject of the sentence was fast,
second, or third person was straightforward. The

“ pronouns I, ” “me,” and “we” were taken to indicate first
person, while “you” was taken to indicate second person.
All occurrences of named people or groups, or the
pronouns “they,” “it,” “them,” “he,” “she,” and so on
were categorized as third person.

RESULTS
A total of 1796 behavior descriptions were extracted horn
the nine domain analysis sessions.

121

Frequencies of Description Types
The overall distribution of the types of behavior
descriptions is given in the following table:

Specialized Vocabulary (SV) . 483
Physical Movement (PM) . 676
Perceptual (P) . 163
Naive Psychological (Npsy) . 425
Other (0) . 49
Overall, then, the descriptions cast in terms of naive
psychology comprise a substantial portion, about 24%, of
the total of behavior descriptions. If we add together all ti
the metaphorical descriptions, i.e., Physical Movement,
Perceptual, and Na’ive Psychological, there were a total Cg
1264 such descriptions as compared to 483 “literal”
descriptions, i.e., those that used a more or less well-
defined computer science or domain-specific vocabulary.
In terms of percentage, about 70% of all behavior
descriptions were metaphorical.

Changes in Frequency Distributions Over Time
Figures 1 through 3 show the percentages of Npsy and SV
descriptions from early to late sessions within the three
analyses. The percent of Npsy descriptions remains
substantial throughout. It dipped below 20% in only one
session (where they accounted for about 16% of all
descriptions). Clearly, there is no downward trend in the
proportion if Npsy descriptions. In fact, the percentage of
Npsy descriptions increased from Early (22%) to Middle
(23%) to Late (30%) when the data are aggregated across
all three domain analyses.

I NaTve Specialized
Psychological Vocabulary

I

1
Signal

f

0%
Early Middle Late

Figure 1. Percent of NP and SV
descriptions in Signal 1

Signal

Early Middle

Revision

t

I
Early Middle Lata

Figure 3. Percent of NP and SV
descriptions in Revision

Sequential Order of Description Types
The hypothesis investigated was that behavioral
descriptions using each type of metaphor would occur in
sequences rather than be randomly distributed through
each session. This hypothesis was tested using log-linear
modeling on a table of transition kquencies (see
Appendix A for details of the analysis and results). Table
1 shows the frequencies of transitions among the types Cc
descriptions.

&; ‘-7,:’ i: s: 1o ,
r,: ““,~“;‘..‘~ ..*. +i .

2
.

19 1o
..^ ”

p+’ ;;:,‘-.. _s, ~..,~*“~.**.l,.r.t*~~...... 4.5 4 39 47 28
pair. id;:, $ ” I::

‘.r.~.-~r..;rt..i 154 18 49 323 130
-” ; sJ(‘::‘ : ” ‘t::: ,L,.‘*,*~~:“*?..,L~...~.~ 84 9 41 124...... 222

Table 1. Frequencies of transitions from Antecedent
type of description to Consequent type of description.
Frequencies are summed across all sessions.

The results of the analysis show that the tendency of
behavior descriptions to follow descriptions of the same
type is highly statistically significant. The Gequencies CE
transitions on the diagonal (shown in bold) in Table 1 is
much greater than would be predicted by chance (see
Appendix A for further explanation).

First and Second Person Descriptions
The overall distribution of first, second, and third person
actors in behavioral descriptions is shown in the
following table:

Table 2. Distribution of lst, 2d, and 3d person.

The ordinal position of these frequencies is consistent
across the three analyses. The sum of first and second

Figure 2. Percent of NP and SV
descriptions in Signal 2

122

person actors is never less than one-third of all actors in
an analysis, and comprises a majority of actors in the
other two. Overall, about one-half of all actors in the
behavioral descrptions are in the first or second person.

DISCUSSION
Taken together, the results provide powerful support Ibr
the idea that metaphorical representations played a major
role throughout the domain analysis sessions studied. In
fact, they represent a majority of all behavior descriptions.
Naive psychological descriptions, which are arguably the
“least literal” of the description types studied, do not
appear to be mere placeholders for other, more literal,
descriptions, since their proportion did not decrease over
time within analyses. Rather, they appear to fulfill some
need that persists throughout each analysis. Nor do the
metaphorical descriptions appear to merely reflect
moment-to-moment choice of vocabulary, since
descriptions within a single metaphor tend to occur in
sequences. There is little reason to expect this non-
random distribution unless the participants are adopting
and staying within a particular metaphorical
representational system before moving on. Finally, there
is additional evidence that the participants are actually
using the naive psychology metaphor, since they
“personify” the software, as indicated by use the fmt and
second person to represent the software as actor, in about
half the descriptions (see also [36]).
These results need to be interpreted cautiously, of course.
The data all came from domain analysis sessions, and
domain analysis is a particularly abstract task, where one
is describing a whole family of applications. The software
in all cases was his highly complex
telecommunications software. It may be that with smaller
programs, or with less abstract tasks, there would be less
of a tendency to bring metaphorical descriptions to bear.
Additionally, although the subjects came fi-om several
different development organizations, they were all from the
same company. The results might be diffemnt in other
corporate and engineering cultures. Studies of other tasks,
people, and settings are clearly needed.

Abstraction and Speed
It would not be surprising, however, if the complexities cf
reasoning about state, behavior, faults, interactions,
scenarios constructed on the fly, and so on, virtually
require the use of naive psychological “social
intelligence.” People find it relatively easy to keep track
of what other people know about a complicated situation,
what these other actors are trying to do, how they am
likely to react to new information, what knowledge and
intentions can be inferred from their behavior, and so on.
The enormous cognitive demands of collaborative
software engineering tasks may simply require developers
to use these intellectual resources, especially since this
may be the only powerful representation and reasoning
system shared by all members of diverse teams.
Collaboration also demands that participants reason very
quickly about extraordinarily complicated systems, e.g.,

to construct and walk through a novel scenario, to
understand the implications of a change, and so on, at
conversational speed. Synchronous collaborative work
imposes a fast pace that is unlike the self-paced tempo of
individual work. It may be extremely difficult to achieve
this level of abstraction and speed in collaborative work in
any other way. Again, it will require additional studies of
other tasks, people, and settings to address this question.

Fusing the Organization and the Artifact
The specific way in which the domain analysts personified
the soflware shows another important feature of naive
psychology that may be important for collaborative work
within a large organization. They tended to identify the
software with the person or team that produced it, as when
remarking that “we’re assuming you are left in a valid
condition, once we stop.” Notice it is the system, not the
people, that are “left in a condition” and that “stop.” Yet
the verbal “fusing” of the people and the part of the
system they created results in a personification that is t&
from arbitrary, but rather helps the participants stay
constantly aware of the mapping of system I%nctionality
onto the development organization. In fact, there was at
least one occasion when temporary confusion resulted over
whether a particular behavior under discussion was
something that a team of people performed, or whether it
was something the sofhvare those people designed
performed.
This apparent “fusion” or identification of people with
their artifacts is a powerful acknowledgement of the
importance of “Conway’s Law,” i.e., that the structure of
the software reflects the structure of the organization [7].
People appear to take advantage of this mapping in the
“fused” representation that provides a very compact way
of keeping track of critical organizational information, as
well as information about the system, in a single
structure.

Naive Psychology
Representations

and Standard

The relationship of naive psychological representations to
other, more standard software engineering representations
is also an important issue. Representations must often be
moved from one medium to another [19, 271 as when, for
example, part of a diagram is discussed (diagrammatic to
verbal) or the results of the discussion are captured in the
diagram (verbal to diagrammatic). If this translation is
difficult, one might expect errors to creep in with some
frequency. If the words used to discuss an issue coot
accurately express the situation, or if the consensus
achieved in a discussion cannot be fully expressed in a
more durable representation, the results are unlikely to be
satisfactory.
This line of reasoning has several implications. First,
there might be significant advantages for using “standard’
representations that are as compatible as possible with
na’ive psychology. One might make the case, for
example, that agent representations are a good fit [33], or
even that 00 representations, since objects have both

123

state and behavior, fit well with ndive psychological
capabilities. On the other hand, functional representations
are relatively incompatible with naive psychology.
Future work should examine the discussions around
representations of various sorts to see if naSve psychology
is o&n used in conjunction with “incompatible”
representations, and if so, whether the translations to and
from “talk” are difficult or error-prone.
The second implication is that it is important to achieve a
better understanding of the semantics of naive
psychological representations. If we had a clearer idea d
what it means to say, e.g., that component A should, in a
particular scenario, “know” that component B is not
functioning properly, then we would be in a better
position to see if this “knowledge” is fully implemented
in the detailed design and code.
A third, and somewhat more radical, possibility would be
to design specification languages that are either directly
based on naive psychology, or that are designed to be
easily translated. As I mentioned in the introduction, it
has occasionally been suggested that anthropomorphic
talk should be somehow banned because it is sloppy and
imprecise. Perhaps we should take the opposite tack and
adjust our standard representational machinery to
accommodate the modes of reasoning and representing
that actually are used by software engineers.

A Cautionary Note
It is important to point out that the capacity for ndive
psychology evolved in order to understand human minds,
not software. Human minds and software differ in many
obvious and significant ways, regardless of the
programming paradigm used. For example, we tend to
think of beliefs as atomic, i.e., if I ascribe a belief p to a
human, I assume they will always act as if they believe p,
until they (atomically) cease to believe p. Software may
or may not be consistent, perhaps acting sometimes as if
it believes p, and other times as if it doesn’t (if, e.g.,
some functions check a particular piece of state, but others
were written incorrectly and do not). Similarly, if I
ascribe a desire to a human, I expect them to seek an
alternative way to fulfill it if one specific path is blocked.
Again, software is often not that smart. An interesting
research question for the futum is to try to determine if
these sorts of assumptions actually lead to significant
numbers of software errors.

ACKNOWLEDGEMENTS
I would like to thank the commonality analysis
participants and moderators for allowing me to videotape
their sessions. I also thank Beki Grinter for comments on
an earlier drafl of this paper, and Audris Mockus fcr
comments as well as advice on the statistical analyses
(any errors or omissions are solely the responsibility d
the author, of course).

REFERENCES
PI

PI

[31

[41

151

Fl

[71

PI

[91

T. Ball and S. Eick, “Software Visualization in the
Large,” IEEE Computer, Vol. 29, No. April, 1996,
pp, 33-43.
R. Boyd, “Metaphor and Theory Change: What is
“Metaphor” a Metaphor for?,” Metaphor and
Thought, A. Grtony ed., Cambridge University
Press, Cambridge, UK, 1993, pp. 481-542.
F.P. Brooks, “No Silver Bullet: Essence and
Accidents of Software Engineering,” IEEE Computer,
Vol. 20, No. 4, 1987, pp. 10-19.
P. Churchland, “Eliminative Materialism and the
Propositional Attitudes,” Journal of Philosophy,
Vol. 67, No. February, 1981, pp. 67-90.
A. Clark, “From folk psychology to naive

psychology,” Cognitive Science, Vol. 11, NO. 1987,
pp. 139-154.
H.H. Clark and S.A. Brennan, “Grounding in
Communication,” Perspectives on Socially Shared
Cognition, L.B. Resnick, J.M. Levine and S.D.
Teasley ed., APA Books, Washington, DC, 1991,
pp. 127-149.
M.E. Conway, “How Do Committees Invent?,”
Datamation, Vol. No. April, 1968, pp. 28-3 1.
L. Cosmides and J. Tooby, “Origins of domain
specificity: The evolution of functional organization,”
Mapping the Mind: Domain Specificity in Cognition
and Culture, L.A. Hirschfeld and S.A. Gelman ed.,
Cambridge University Press, New York, 1994, pp.
85-116.
R.S. Day, “Alternative representations,” The

psychology of learning and motivation, G. Bower
ed., Academic Press, Orlando, FL, 1988, pp. 261-
305.

[IO] D.C. Dennett, “Intentional Systems,” Journal of
Philosophy, Vol. 8, No. 197 1, pp. 87-106.

[I I] D.C. Dermett, “True believers: The intentional
strategy and why it works,” The Intentional Stance,
ed., MIT Press, Cambridge, MA, 1987, pp. 13-35.

[12] E. Dijkstra, “On the cruelty of really teaching
computer science,” Communications of the ACM,
Vol. 32, No. December, 1989, pp. 1398-1404.

[131 P.C. Fletcher, F. Happe, U. Frith, S.C. Baker, R.J.
Dolan, R.S.J. Frackowiak and CD. Frith, ‘Other
minds in the brain: A functional imaging study of
“theory of mind” in story comprehension,”
Cognition, Vol. 57, No. 1995, pp. 109-128.

[14] D. Gentner, “Are Scientific Analogies Metaphors,”
Metaphor: Problems and Perspectives, D.S. Miall
ed., The Harvester Press, Sussex, England, 1982, pp.
106-132.

[151 T.R.G. Green, “Cognitive dimensions of notations.,”
Proc. Fifth Conference of the British Computer

124

Society, Cambridge University Press, 1989, pp. 443-
460.

[16] T.R.G. Green and M. Petre, “When Visual Programs
Are Harder to Read than Textual Programs,” Proc.
Sixth European Conference on Cognitive
Ergonomics, 1992, pp.

[17] T.R.G. Green and M. Petre, “Usability Analysis cf
Visual Programming Environments: A Cognitive
Dimensions Framework,” Journal of Visual
Languages and Computing, Vol. 7, No. 1996, 1996,
pp. 131-174.

[18] J.D. Herbsleb, H. Klein, G.M. Olson, H. Bnmner,
J.S. Olson and J. Harding, “Object-oriented analysis
and design in soIlware project teams,” Human-
Computer Interaction, Vol. 10, No. 1995, pp. 249-
292.

[193 E. Hutchins, “The Technology of Team Navigation,”
Intellectual Teamwork, J. Galegher, R.E. Kraut and
C. Egido ed., Lawrence Erlbaum, Hillsdale, NJ,
1990, pp. 191-220.

[20] R. Jethies, A.A. Turner and P.G. Polson, “The
processes involved in designing software.,” Cognitive
skills and their acquisition., J.R. Anderson ed.,
Erlbaum, Hillsdale, NJ, 1981, pp. 255-283.

[21] J.H. Larkin and H.A. Simon, “Why a diagram is
(sometimes) worth ten thousand words.,” Vol. 11,
No. 1987, pp. 65-100.

[22] A.M. Leslie, “Pretense and representation: The
origins of “theory of mind”,” Psychological Review,
Vol. 94, No. 4, 1987, pp. 412-426.

[23] A.M. Leslie, “ToMM, ToBy, and agency: Core
architecture and domain specificity,” Mapping the
Mnd: Domain Specificity in Cognition and Culture,
L.A. Hirschfeld and S.A. Gehnan ed., Cambridge
University Press, New York, 1994, pp. 119-148.

[24] K.H. Madsen, “A Guide to Metaphorical Design,”
Communications of the ACM, Vol. 37, No. 12,
1994, pp. 57-62.

[25] S. Mithen, The Prehistory of the Mind, Thames and
Hudson, Ltd., London, 1996.

[26] G.M. Olson, J.S. Olson, M.R. Carter and M.
Storrosten, “Small group design meetings: An
analysis of collaboration,” Human-Computer
Interaction, Vol. No. 1992, pp.

[27] C. Potts and L. Catledge, “Collaborative Conceptual
Design: A Large Software Project Case Study,” The
Journal of Collaborative Computing, Vol. 5, No.
1996, pp. 415-445.

[28] R.S. Rist, “Plans in Programming: Definition,
Demonstration, and Development,” Proc. Empirical
Studies of Programmers, Ablex, 1986, pp. 28-47.

[29] M.B. Rosson and S.R. Alpert, “The cognitive
consequences of object-oriented design,” Human-

Computer Interaction, Vol. 5, No. 1990, pp. 345-
379.

[30] D.A. Schon, “Generative Metaphor: A Perspective on
Problem-Setting in Social Policy,” Metaphor and
Thought, A. Grtony ed., Cambridge University
Press, Cambridge, UK, 1993, pp. 138-163.

[31] H.A. Simon, The sciences of the urtiJciuZ, The MIT
Press, Cambridge, MA, 1981.

[32] S. Stich, From Folk Psychology to Cognitive
Science, MIT Press, Cambridge, MA, 1983.

[33] M.D. Travers, Programming with Agents: New
Metaphors for Thinking about Computation,
Doctoral Dissertation, Cambridge, MA,
Massachusetts Institute of Technology, May 3, 1996.

[34] D.B. Walz, J.J. Elam and B. Curtis, “Inside a
Software Design Team: Knowledge Acquisition,
Sharing, and Integration,” Communications of the
ACM, Vol. 36, No. 10, 1993, pp. 62-77.

[35] D.M. Weiss, “Commonality Analysis: A Systematic
Process for Defining Families,” Proc. ARES
Workshop on Development and Evolution of
Software Architectures for Product Families, 1998,
PP.

[36] J. Weitzenfeld, T. Reidl, C. Chubb and J. Freeman,
“The Use of Cross- Domain Language by Expert
Software Developers,” Journal of Metaphor and
Symbolic Activity, Vol. 7, No. 3 & 4, 1992, pp. 185-
195.

125

APPENDIX A: CATEGORIZATION AND
STATISTICAL ANALYSIS
This appendix presents some details of how the behaviors
were categorized, and about the statistical analysis
underlying the conclusions in the section on “Sequential
Order of Description Types.”

Behavior Categorization
The sentence containing each verb phrase was entered in a
cell in a spreadsheet. Once all the verb phrases had been
entered, all information permitting identification of the
phrase with a particular meeting or condition was hidden.
This was done to ensure that the coder’s expectations
could not influence the categorization. The sentences
were then ordered randomly so that any “drift,” or
unintentional change in the categorization procedure over
time would produce only random noise rather than
systematically affecting the results.
A preliminary pass through part of the data was made in
order to identity ambiguous cases where categorization
proved difficult. A set of rules was developed in order to
handle these ambiguous cases consistently. In all, them
were over two pages of such rules (which are available
from the ,author). This is sufIicient to establish a
reasonable level of confidence that the categorization
procedure was consistent and unbiased.

Statistical Analysis
A log-linear model of the hequencies in Table 1 was
constructed, including the main effects and the cells on the
diagonal as factors. The diagonal cells represent the
transitions from a description type to itself. Therefore,
testing this model is a way of determining whether,
overall, description types tend to repeat themselves.
The results (Table 2) show that the diagonal cells have a
higher fkequency than would be expected based on the
marginal frequencies alone (chi-square = 139, one degree
of freedom, p < .OOOOOOOl). The metaphorical
descriptions are clearly not distributed randomly
throughout each session, but tend to occur in sequences cf
a single type.

Resid Resid
Df Deviance Df Dev Pr(Chi)

NULL 23 1845
antecedent 4 830 19 1015 0.0000
consequent...4 827 15 188 0.0000
ante = cons .l 139 14 49 0.0000

Table 3. Results of log-linear model of transition
frequencies in Table 1.

A further analysis was conducted to rule out one
alternative explanation of these findings. It is possible
that the results reported above are due entirely to
individual preferences of the meeting participants. So, ti
example, if one speaker prefers “physical movement”

verbs, and another prefers “naive psychological” verbs,
then the overall data would tend to indicate that verb
types repeat themselves simply because speakers tend to
utter several verbs during each conversational turn. Thus,
the individual preference could be mistaken for an overall
tendency to stick with a single metaphor.
In order to test this alternative explanation, a table of
transition frequencies was constructed using only those
transitions where the speaker changed, discarding
transitions between consecutive descriptions uttered by
the same speaker. This generated the following table:

T.,‘ ., -,,:
,.e;..;..;.,;i 35 2 9 42 20 ‘I_.
: * .:

:,: :
_‘j, ~~~$~~*,*:c”r.&iPr 5 2 l.......... 8 6 _‘_ .:‘ ?n’ <>,?i i ,:,s xj:>: 1 ‘<:,,,I, , . C. I f .““;‘* . $ 14 l....... 10 15 7 $+:.;$g:” .I::..‘-,’ - ,: .I, ,,“‘-‘ *,, ‘.f . .: .*,. 42 8 16 90 39 ,, ,. ., ,;.s,s..3.i;& 34 5 10 34 85 ” ,, ‘;

_>,,
Table 4. Transition frequencies where speaker
changes from one description to the next.

Again, constructing a log-linear model with main etIbds
and the cells on the diagonal as factors, the results show
that the diagonal factor is highly significant (chi-square =
9.9, one degree of l?eedom, p < .002).

Resid Resid
lx Deviance .Df Dev Pr(Chi)

NULL 23 423
antecedent 4 194.3 19 228.8 0.0000
consequent...4 209.0 15 19.7 0.0000
ante = cons .l........... 9.9 14 9.9 0.0017

Table 5. Results of log-linear model of transition
frequencies in Table 4.

Thus, while there may be a tendency for speakers to prefer
a particular type of behavior description, that preference
cannot account entirely for the overall tendency ti
description types to occur in sequences.

126

