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ABSTRACT 
Finding a useful abstract representation is fundamental to 
solving many difficult problems in software engineering. 
In order to better understand how representations are 
actually used in key collaborative software engineering 
tasks, this empirical study examined all of the spoken 
representations of soflware behavior in 9 domain analysis 
sessions. It found that about 70% of them were 
metaphorical, representing system behavior as physical 
movement of objects, as perceptual processes, or in 
anthropomorphic terms ascribing beliefs and desires to the 
system. The pattern of use of these representations 
indicates 1) that they were not merely temporary 
placeholders, but rather their use persisted even when a 
specialized and more formal vocabulary had been 
developed, and 2) the metaphoric descriptions appear to 
reflect actual use of metaphor, rather than just a choice of 
vocabulary. The use of metaphor is explained in terms d 
how well they serve human cognitive abilities and 
collaborative needs. The predominance of metaphorical 
representations in synchronous collaborative sessions 
raises important issues about the possible misleading 
effects of metaphorical thinking. It also raises questions 
about the compatibility of the spoken representations with 
other representations (e.g., diagrams, specification 
languages) that trigger, and capture the results of, the 
verbal collaborative work. 

INTRODUCTION 
It has long been observed informally, as well as in case 
studies [24] and in interviews [36] that software engineers 
frequently talk about software behavior in 
anthropomorphic terms, e.g., in terms of what a 
component “knows” or is “trying to do.” This strikes 
many as sloppy and imprecise, hence undesirable. 
Dijkstra [12] has gone so far as to suggest that computer 
science faculty implement a system of fines to stamp it 
out among their students, although he acknowledges this 
would be very difficult to do. 
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The purpose of the empirical research reported here is to 
begin systematically investigating the use of these sorts d 
metaphorical representations in software engineering. E 
in fact, their use is as pervasive as many believe, one 
might wonder why this is so, since it is certainly not 
taught explicitly as part of any standard software 
engineering curriculum. As the remainder of this 
introduction points out, prior research gives us good 
reason to expect that metaphorical representations of 
behavior,’ and anthropomorphic representations in 
particular, have enormous advantages both for individual 
cognition and for the distributed cognition that underlies 
collaborative work. But pervasive use of metaphorical 
representations would also raise serious questions about 
the possible misleading effects of metaphorical thinking, 
and about the possibility of errors being introduced by 
virtue of the potential incompatibility of metaphorical 
representations with other, more standard, representations 
used in computer science. 
The empirical study reported here is a content analysis of 
all descriptions of software or system behavior that 
occurred in nine domain analysis sessions. The objective 
is to determine the frequency with which metaphorical 
descriptions occurred, and to investigate several questions 
about how and when they were used so as to begin to 
understand the significance of the role they play. The 
specific research questions are presented at the conclusion 
of the introduction. The empirical methods are described 
in Section 2, and the results in Section 3. The paper 
concludes with a discussion in Section 4 of the potential 
opportunities and dangers revealed by these findings, and 
of new research questions raised. 

Representations in Software Engineering 
There am probably few who would dispute that 
representations play a key role in problem solving. 
Herbert Simon [31] may have given us the clearest 
statement of the pivotal role of representations in 
intellectual work when he claimed that “solving a 

’ The terms “system behavior” and “software behavior” 
will be used interchangeably, since all the software in 
this study is embedded, and the behavior of the software 
and the system are not easily separable. 
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problem simply means representing it so as to make the 
solution transparent (p. 153).” The influence of different 
types of representations on an individual’s ability to solve 
a problem has been documented many times (e.g., [9, 
211). 
Cognitive processes of individuals 
There have been a number of studies that have 
investigated the representations and cognitive processes of 
programmers. Several of these have emphasized the need 
for abstract, integrative structures, such as plans [28] or 
schemata [20] for achieving and maintaining a high-level 
view of the developing program. Other studies have 
documented the effects of using various types of lower 
level representations such as notations [ 151 and visual 
programming languages [ 171. 
Some types of representations seem to have particular 
advantages because they make use of specific, powerful, 
cognitive abilities. An excellent example is visualization. 
It is clearly not the case that all visual representations ate 
useful for all purposes (e.g.., [16]), but when a 
visualization matches a task well, the visual processing 
capabilities of the brain allow a tremendous amount of 
information to be conveyed in compact form which is 
readily grasped. For example, software visualization 
technologies (e.g., [l]) appear to be a significant aid to 
understanding very large, complex software systems. 

Representations and collaborative work 
For collaborative soflware engineering, representations 
must not only match and support the cognitive tasks d 
individuals, they must support the “distributed 
cognition” (e.g., [ 191) of the entire constellation of people 
and artifacts that together produce a solution. This 
imposes many additional requirements on representations, 
such as their “openness” to viewing by more than one 
person simultaneously and their ability to support the 
sorts of exchanges and handoffs that occur among 
individuals. Especially important is the support 
representations provide fa establishing “common 
ground” [6], i.e., the state that we agree on what we am 
referring to, and know that we agree. 
It has often been proposed that certain types of 
representations used in soflware engineering have 
advantages f@ collaborative work. Object-oriented (00) 
representations, for example, have properties that am 
theorized to facilitate communications among those 
involved in collaborative development tasks [29], and 
there is some evidence that use of 00 representations 
reduces the need for clarification in the discussion d 
design ideas [18]. 

Collections of representations 
Most software engineering tasks are sufficiently complex 
that many representations are used in concert. A wide 
variety of types of diagrams, specification languages, 
programming languages, and so on have evolved to meet 
various needs. Much of the collaborative work is done in 
the context of meetings, formal or informal, as the 

participants discuss documents, diagrams, and so on, and 
the issues they raise [26, 27, 341. This typically occurs 
in many iterations, as ideas “move” from the more stable 
media such as paper, whiteboard, or computer screen to 
the transitory verbal medium of conversation, then back to 
more stable media as issues are resolved. Much of the 
crucial work occurs during these periods of discussion 
when the primary representational medium is spoken 
language. The properties of the specific types of 
representations that are rendered in this verbal medium 
can be expected to influence the course and the success of 
the collaborative task as do the properties of other 
representations. The ease and precision with which other 
sorts of representations can be translated into verbal 
representations, and with which conclusions represented 
verbally can be translated into a more stable medium 
would also be expected to have a substantial impact on 
the process. 
This section has focused on the critical role of 
representations in software engineering. I turn now to a 
discussion of certain types of metaphorical representations 
and research that bears on their suitability for collaborative 
software engineering tasks. 

Metaphorical Representations 
Metaphors are widely used to ,understand new or difficult 
domains in terms of things already understood. They can 
be very important and illuminating in bringing to light 
important characteristics one might not otherwise be able 
to express or even think about [2]. But they can also 
shape thinking and discussion in ways that close elf 
options and neglect critical aspects of the objects under 
consideration [30]. This is particularly true CE 
metaphors, as opposed to deliberate comparisons in the 
form of analogy [14], since metaphors am often used 
implicitly to establish a conceptual foundation for the 
lesser-known domain. 
Informal observation, case studies (e.g., [24]) and 
interviews [36] all indicate that metaphorical language is 
used in various software engineering tasks. For example, 
communication between components or processes is 
sometimes spoken of as if physical objects like “packets” 
are sent, received, handed off, tom apart, damaged, or lost. 
This is clearly a metaphorical characterization of the true 
physical situation, but as metaphors go, it sticks fairly 
close to the facts. 
Other sorts of metaphor venture further from the literal. A 
process may “look at” the contents of a message, 
“recognize” a problem, “decide” to “take action.” Even 
further from the literal are descriptions of what a process 
“thinks” is happening, what it is “trying to do,” what 
things it “knows” about and doesn’t “know” about, and 
so on. These latter anthropomorphic metaphorical 
expressions are examples of what is often called “naive 
psychology.” 
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Naive psychology as a specific cognitive capability 
There is considerable evidence that naive psychology is a 
“special” sort of metaphor, in that it exploits a specific 
cognitive capability that evolved as a result of natural 
selection pressures favoring prehuman ancestors that were 
able to navigate the social world more effectively than 
their peers [5, 8, 22, 251. This particular type of social 
reasoning ability emerges, without any special 
instruction, in virtually all intact humans. In a course of 
development which is increasingly well understood, 
children develop fmt a “naYve physics” that supports 
reasoning about physical objects and their movements. 
Somewhat later, “naive psychology”, or “theory of mind” 
[23] emerges, allowing them to reason in sophisticated 
ways about people, based on what they infer a person’s 
state of knowledge and motivation to be. It appears to 
involve brain processes quite distinct from those used to 
reason about behavior in physical terms [ 13,221. 
Much is also understood about the mechanics of naive 
psychology. It involves a particular mode of reasoning in 
which behavior is explained in terms of the beliefs and 
desires (or near-synonyms, such as “wants,” 
“knowledge,” and so on) of the one whose behavior is 
being explained (whom I’ll call the “behaver”) [5, 321. 
For example, a typical explanation of why a developer 
selected a particular data structure might invoke the 
developer’s desire to perform certain manipulations on the 
data, and a belief that this particular data structure would 
allow efficient access to and storage of the data for these 
manipulations. Explanations can, of course, be much 
more elaborate, but they all tend to be cast in beliefs and 
desires or their near-synonyms. 
One of the important component skills that allows ntive 
psychology to function is the ability to infer the behaver’s 
current state of knowledge and current desires and what 
further behavior these are likely to produce [ll, 231. 
People are very skilled at such things as keeping track of 
what information a behaver has been exposed to, i&ring 
what the behaver must have known in order to have 
per8ormed certain actions, and what a behaver must be 
trying to do, given its behavior and current knowledge. 

Naive psychology and software behavior 
One of the fundamental challenges in software engineering 
is the extreme complexity of software [3]. Many kinds af 
artifacts are structurally complex, but there is little doubt 
that compared to any other type of artifact ever created, 
large computer programs (during execution) are by far the 
most behaviorally complex. One might speculate then, 
that a specific cognitive capacity that evolved in order to 
deal with behavioral complexity might be a powerful tool 
for understanding the behavior of software. 
The characteristics of naive psychology am well-suited to 
some kinds of tasks. It is a highly abstract 
representational system. In saying, for example, that a 
software component A “knows” about another component 
B, the nature of the relationship is only very incompletely 
specified. The statement implies merely that the behavior 

of A may be in some way contingent on the function or 
behavior of B. The nature of the contingency is 
unspecified. Similarly, if A is said to “believe” that a 
particular event has occurred, this statement implies that 
A may behave differently than it would if A did not 
“hold” this “belief” about the event. If, on the other 
hand, A has no beliefs one way or the other about some 
event, then A’s behavior cannot be (directly) contingent 
on the event. Statements about desire are similarly 
abstract. If we assert that A “wants” to communicate 
with B, for example, we don’t know if A will actually 
attempt to communicate with B, or if so, how, or with 
what message, or with what success. 
The component skills of someone competent in naive 
psychological reasoning are also matched, at least 
superficially, to many tasks in software engineering. In 
designing or understanding a complex, multi-component 
system, it is extremely important to be able to keep track 
of what state each component is in, what it is “trying” to 
do when its behavior causes a fault, what it “knows” 
about the state of other components, what it “knows” 
about various protocols, external entities, and so on. If 
the skills of nafve psychology allow an engineer to keep 
track of this sort of information with little effott, because 
of a built-in capability, it would be advantageous indeed. 
Another of the interesting properties about beliefs and 
desires is that they are always about something. [4, lo]. 
In ascribing a belief p to behaver A, I am not saying 
something only about A. Rather, I am asserting some 
sort of relationship between A and the object of belief p. 
So, for example, if I say that component A believes a 
particular file is corrupted, this asserts something about 
A’s current state, but also about a particular sort of 
relationship that A has to the file. A description purely in 
terms of A’s state (e.g., variable X has value ‘0’) does 
not convey such information. Statements about what a 
component knows, believes, is trying to achieve, and so 
on are very compact, abstract expressions of potentially 
very complex relationships that would be difficult to fully 
express in other, non-anthropomorphic terminology. 
Finally, naive psychological representations may be 
particularly well-suited to collaborative tasks. The highly 
developed cognitive capacity that underlies such 
representations is virtually universally shared. 
Collaborators can follow each other’s reasoning quickly, 
with relatively little effort, and can rely on being 
understood. Particularly in teams with diverse training 
and experience, having some such representational system 
for establishing common ground is essential for successful 
collaboration [6 1. 
I have argued in this introduction that metaphorical 
representations, particularly naive psychological 
representations, have properties that make them appealing 
in some ways as a representational system for sothvare 
behavior, both because of a match (albeit, perhaps a 
superficial one) with some important tasks, and because 
they make use of a specific, powerful, cognitive capability. 
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The specific research questions are presented in the next 
section. 

Research Questions 
This research seeks to answer four basic questions about 
the use of metaphorical representations of system behavior 
in a collaborative software engineering task. Together, 
the answers should give a good indication of how 
extensively they are used, and whether the use is 
superficial or is an essential feature of the intellectual 
work. The first and most basic question is 
1. How frequent are metaphorical descriptions of 

behavior, as compared to other modes of 
describing system behavior? Of the metaphorical 
descriptions, how many use nake psychology? 

The next question concerns how the naive psychology 
representations are used. A “placeholder” hypothesis 
would assert that naive psychology representations are 
primarily temporary placeholders for literal descriptions. 
Under this hypothesis, ndive psychology descriptions 
would be relatively frequent in the early stages of analysis, 
when there is the greatest need for placeholders for as-yet- 
undetermined literal terminology. As the analysis 
progresses and literal terms become increasingly available, 
the proportion of naive psychology descriptions would 
decrease relative to literal descriptions. If they do not, 
then naive psychology presumably serves some other role 
that continues to be important throughout the analysis. 
More specifically, the question is 
2. Does the proportion of na’ive psychology 

descriptions decrease over the course of each 
domain analysis? 

The use of metaphorical vocabulary may reflect only a 
choice of convenient words, without actually reflecting the 
use of an underlying metaphorical representation. If this 
is the case, one would expect to find the metaphorical 
descriptions distributed more-or-less randomly throughout 
the sessions. If, on the other hand, use of metaphorical 
vocabulary actually reflects occasions when the 
participants are using a metaphor for problem solving, one 
would expect to see sequences of descriptions all drawn 
from the same type of metaphor, shifting eventually as 
other metaphors or literal descriptions are brought to bear. 
Ifbehavior descriptions are not randomly distributed, but 
rather tend to occur in same-metaphor sequences, this 
would tend to indicate the “mere word choice” hypothesis 
is false. The question to be addressed: 
3. Do metaphorical representations tend to occur in 

sequences, or is their use distributed randomly 
throughout the sessions? 

Finally, if the descriptions of software or system behavior 
are actually making use of a specific cognitive system 
specialized for social intelligence, then one might expect 
to find other linguistic traces of the use of this specialized 
system. In particular, one might expect to see the 
software or system “personified,” i.e., spoken of as if it 
were a person. There are many ways one might test fbr 

evidence of personification. I elected to use a very simple, 
straightforward, and conservative one. In each verb phrase 
describing system behavior, if the word used to denote the 
actor is clearly one typically associated with a person and 
not a “thing,” this is a form of personification. So, for 
example, the behavior description “I just loop through 
the list” is clearly a personification, referring to the 
software’s behavior as if the actor were a person (“I”). 
The non-personified alternative, of course, would be “It 
just loops . . .” The clearest evidence of personification is 
when the actor is in the fast (I, me, we) or second (you) 
person. Third person pronouns may or not represent 
personifications, since “they” can refer to persons or 
things, and “he” and “she” can by convention be used 6~ 
things (as when ships are referred to as “she”). Counting 
the occurrences of first and second person .pronouns as 
actors in behavioral descriptions of the software is a 
simple, clear, and conservative way of searching ti 
evidence of personification. If such occurrences are 
frequent, then the total fi-equency of personifications must 
be at least that great. So the research question is 
4. How frequently is the subject of the software or 

system behavior description rendered in the first 
or second person? 

METHOD 
The empirical approach used in this study was a content 
analysis of conversation during nine domain analysis 
meetings. 

Commonality Analysis Sessions 
The data for this study were taken from sessions of a form 
of collaborative domain analysis called commonality 
analysis [35]. The commonality analysis process consists 
of a series of facilitated sessions in which domain experts 
collaboratively identify and express what is common 
among all members of a family (called “commonalities”) 
and what difI’ers from one member to another 
(“variabilities”) as well as the range of values the 
variabilities can assume (“parameters of variation”). At 
the participants’ discretion, many forms of representation 
are used in these sessions, including data-flow diagrams, 
formal logic, fmite state machines, and so on. The final 
document expressing the results of the analysis is in 
English (rather than a formal notation), and is structured 
in several sections listing the commonalities, 
variabilities, and the parameters of variation. 
Three series of commonality analysis meetings in a large 
telecommunications company were selected for this study. 
These analyses were conducted by groups of domain 
experts, all of whom were quite experienced in the domain 
to be analyzed, and a trained moderator, who was not a 
domain expert. The moderators strove to capture, not 
dictate, the ways in which the domain experts expressed 
their ideas. We can assume, therefore, that the ways in 
which these experts talked to each other reflect their 
ordinary modes of talking and thinking. The basic task 
in commonality analysis is to identib what is common 
and what varies from family member to family member in 
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the domain, so that the full variety of family members can 
be quickly constructed as needed. In the course of these 
discussions, many descriptions of what existing and future 
family members do and how they work were generated. 
Commonality analyses typically involve at least a half 
dozen sessions of 1-2 hours. Complex domains require 
many more sessions. Three analyses were chosen for this 
study. Signal1 was a very high-level analysis of the 
domain of message-passing protocols in telephony. The 
analysis team consisted of five domain experts at the 
beginning. Two of them had worked together before, the 
others had not. All were from different organizations 
within the company. Two left the analysis task between 
the “early” and “middle” sessions. Signal2 was another, 
more detailed, analysis by the same three remaining team 
members, conducted shortly after Signal1 ended. This 
analysis covered a small portion of the domain in 
Signall, but in much greater detail. I treated it as a 
separate analysis because it was considered to be separate 
by the participants and because it produced a separate 
output. 
The Revision analysis was a completely unrelated analysis 
by a non-overlapping team from an organization not 
represented in the Signal analyses. The task was a 
revision of an already-completed analysis of switch 
maintenance software, i.e., software that allows hardware 
and software to be maintained or upgraded while the 
switch is operating, ensuring it remains in a “safe” 
condition. The purpose of this analysis was to address 
change requests submitted by users of the original 
analysis. The team had two members who remained 
throughout, but was joined in the “middle” session by 
two other domain experts whose skills were needed for a 
time. 
For each domain analysis, three sessions were chosen, one 
to represent the early stages, one to represent the middle 
stages, and one to represent the late stages. In the case d 
Signal1 and Signal2, the early session was the very first 
one in the analysis. The team had already been together 
to receive domain analysis training, and the sessions had 
a high content of analysis work. For the Revision 
analysis, the early session was the second in the series, 
since I was not able to videotape the first. In all cases, 
the middle session was one that had equal numbers d 
sessions before and afler it. The late session was one cf 
the last 2-3 sessions in each analysis. 
Trained and experienced moderators who were not domain 
experts moderated all sessions. Signal1 and Signal2 had 
the same moderator, Revision had a different moderator. 
All sessions were videotaped, with the consent of the 
participants. All descriptions of system (i.e., hardware 
and/or software) behavior were transcribed. Each verb 
phrase describing some action of the system was counted 
as a separate behavior. 

Each behavior was then categorized with respect to the 
type of description (see Appendix A). The categories 
WeI-CZ 

1. 

2. 

3. 

4. 

5. 

Specialized vocabulary (SV): literal (non- 
metaphorical) descriptions that are accepted computer 
science terms, such as call, assign, block, loop, 
execute,parse, and so on. Also included were words 
that were appropriated by the group and assigned 
their own specialized meaning, as indicated by their 
inclusion in a “dictionary” developed as a standard 
part of the commonality analysis. 
Physical movement (PM): descriptions that taken 
literally indicate physical movement, such as get, go, 
give, hand ofi come back, and so on. Also included 
were words associated with physical causality, such 
as have an effect, cause something, start, contain, 
and do work. 
Perceptual (P): descriptions that indicate simple 
sensing of a condition or “looking” through 
something, such as look, see, find, search, check. 
Also included were words indicating simple, 
“mechanical” responses to input, such as pick and 
select. 
Naive psychological (Npsy): descriptions that involve 
beliefs or desires, such as want, tv, think, know, 
seem, say, trust, use, give up. Also included were 
other words that clearly indicated a naive 
psychological view, such as following a rule (as 
opposed to executing an algorithm), or remembering 
what happened. 
Other (0): descriptions that fell into none of the 
above categories. 

Note that no behavioral descriptions were included in the 
analysis if they could be reasonably interpreted solely as 
behaviors of people or groups of people. Only 
descriptions of the behavior of the system were included. 
So, for example, the sentence “We loop through the list 
that’s in the specification” was included because clearly 
the analyst is not “looping” through the list, the soflware 
is. On the other hand, in “We want to loop through the 
list” the “want” would be excluded since a reasonable 
interpretation is that it is the analysts who “want.” The 
soflware does the “looping,” however, so “loop” would 
be included (coded as an SV type of description). 
Determining whether the subject of the sentence was fast, 
second, or third person was straightforward. The 

“ pronouns I, ” “me,” and “we” were taken to indicate first 
person, while “you” was taken to indicate second person. 
All occurrences of named people or groups, or the 
pronouns “they,” “it,” “them,” “he,” “she,” and so on 
were categorized as third person. 

RESULTS 
A total of 1796 behavior descriptions were extracted horn 
the nine domain analysis sessions. 
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Frequencies of Description Types 
The overall distribution of the types of behavior 
descriptions is given in the following table: 

Specialized Vocabulary (SV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 
Physical Movement (PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676 
Perceptual (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 
Naive Psychological (Npsy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 
Other (0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Overall, then, the descriptions cast in terms of naive 
psychology comprise a substantial portion, about 24%, of 
the total of behavior descriptions. If we add together all ti 
the metaphorical descriptions, i.e., Physical Movement, 
Perceptual, and Na’ive Psychological, there were a total Cg 
1264 such descriptions as compared to 483 “literal” 
descriptions, i.e., those that used a more or less well- 
defined computer science or domain-specific vocabulary. 
In terms of percentage, about 70% of all behavior 
descriptions were metaphorical. 

Changes in Frequency Distributions Over Time 
Figures 1 through 3 show the percentages of Npsy and SV 
descriptions from early to late sessions within the three 
analyses. The percent of Npsy descriptions remains 
substantial throughout. It dipped below 20% in only one 
session (where they accounted for about 16% of all 
descriptions). Clearly, there is no downward trend in the 
proportion if Npsy descriptions. In fact, the percentage of 
Npsy descriptions increased from Early (22%) to Middle 
(23%) to Late (30%) when the data are aggregated across 
all three domain analyses. 

I NaTve Specialized 
Psychological Vocabulary 

I 

1 
Signal 

f 

0% 
Early Middle Late 

Figure 1. Percent of NP and SV 
descriptions in Signal 1 

Signal 

Early Middle 

Revision 

t 

I 
Early Middle Lata 

Figure 3. Percent of NP and SV 
descriptions in Revision 

Sequential Order of Description Types 
The hypothesis investigated was that behavioral 
descriptions using each type of metaphor would occur in 
sequences rather than be randomly distributed through 
each session. This hypothesis was tested using log-linear 
modeling on a table of transition kquencies (see 
Appendix A for details of the analysis and results). Table 
1 shows the frequencies of transitions among the types Cc 
descriptions. 
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Table 1. Frequencies of transitions from Antecedent 
type of description to Consequent type of description. 
Frequencies are summed across all sessions. 

The results of the analysis show that the tendency of 
behavior descriptions to follow descriptions of the same 
type is highly statistically significant. The Gequencies CE 
transitions on the diagonal (shown in bold) in Table 1 is 
much greater than would be predicted by chance (see 
Appendix A for further explanation). 

First and Second Person Descriptions 
The overall distribution of first, second, and third person 
actors in behavioral descriptions is shown in the 
following table: 

Table 2. Distribution of lst, 2d, and 3d person. 

The ordinal position of these frequencies is consistent 
across the three analyses. The sum of first and second 

Figure 2. Percent of NP and SV 
descriptions in Signal 2 
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person actors is never less than one-third of all actors in 
an analysis, and comprises a majority of actors in the 
other two. Overall, about one-half of all actors in the 
behavioral descrptions are in the first or second person. 

DISCUSSION 
Taken together, the results provide powerful support Ibr 
the idea that metaphorical representations played a major 
role throughout the domain analysis sessions studied. In 
fact, they represent a majority of all behavior descriptions. 
Naive psychological descriptions, which are arguably the 
“least literal” of the description types studied, do not 
appear to be mere placeholders for other, more literal, 
descriptions, since their proportion did not decrease over 
time within analyses. Rather, they appear to fulfill some 
need that persists throughout each analysis. Nor do the 
metaphorical descriptions appear to merely reflect 
moment-to-moment choice of vocabulary, since 
descriptions within a single metaphor tend to occur in 
sequences. There is little reason to expect this non- 
random distribution unless the participants are adopting 
and staying within a particular metaphorical 
representational system before moving on. Finally, there 
is additional evidence that the participants are actually 
using the naive psychology metaphor, since they 
“personify” the software, as indicated by use the fmt and 
second person to represent the software as actor, in about 
half the descriptions (see also [36]). 
These results need to be interpreted cautiously, of course. 
The data all came from domain analysis sessions, and 
domain analysis is a particularly abstract task, where one 
is describing a whole family of applications. The software 
in all cases was his highly complex 
telecommunications software. It may be that with smaller 
programs, or with less abstract tasks, there would be less 
of a tendency to bring metaphorical descriptions to bear. 
Additionally, although the subjects came fi-om several 
different development organizations, they were all from the 
same company. The results might be diffemnt in other 
corporate and engineering cultures. Studies of other tasks, 
people, and settings are clearly needed. 

Abstraction and Speed 
It would not be surprising, however, if the complexities cf 
reasoning about state, behavior, faults, interactions, 
scenarios constructed on the fly, and so on, virtually 
require the use of naive psychological “social 
intelligence.” People find it relatively easy to keep track 
of what other people know about a complicated situation, 
what these other actors are trying to do, how they am 
likely to react to new information, what knowledge and 
intentions can be inferred from their behavior, and so on. 
The enormous cognitive demands of collaborative 
software engineering tasks may simply require developers 
to use these intellectual resources, especially since this 
may be the only powerful representation and reasoning 
system shared by all members of diverse teams. 
Collaboration also demands that participants reason very 
quickly about extraordinarily complicated systems, e.g., 

to construct and walk through a novel scenario, to 
understand the implications of a change, and so on, at 
conversational speed. Synchronous collaborative work 
imposes a fast pace that is unlike the self-paced tempo of 
individual work. It may be extremely difficult to achieve 
this level of abstraction and speed in collaborative work in 
any other way. Again, it will require additional studies of 
other tasks, people, and settings to address this question. 

Fusing the Organization and the Artifact 
The specific way in which the domain analysts personified 
the soflware shows another important feature of naive 
psychology that may be important for collaborative work 
within a large organization. They tended to identify the 
software with the person or team that produced it, as when 
remarking that “we’re assuming you are left in a valid 
condition, once we stop.” Notice it is the system, not the 
people, that are “left in a condition” and that “stop.” Yet 
the verbal “fusing” of the people and the part of the 
system they created results in a personification that is t& 
from arbitrary, but rather helps the participants stay 
constantly aware of the mapping of system I%nctionality 
onto the development organization. In fact, there was at 
least one occasion when temporary confusion resulted over 
whether a particular behavior under discussion was 
something that a team of people performed, or whether it 
was something the sofhvare those people designed 
performed. 
This apparent “fusion” or identification of people with 
their artifacts is a powerful acknowledgement of the 
importance of “Conway’s Law,” i.e., that the structure of 
the software reflects the structure of the organization [7]. 
People appear to take advantage of this mapping in the 
“fused” representation that provides a very compact way 
of keeping track of critical organizational information, as 
well as information about the system, in a single 
structure. 

Naive Psychology 
Representations 

and Standard 

The relationship of naive psychological representations to 
other, more standard software engineering representations 
is also an important issue. Representations must often be 
moved from one medium to another [ 19, 271 as when, for 
example, part of a diagram is discussed (diagrammatic to 
verbal) or the results of the discussion are captured in the 
diagram (verbal to diagrammatic). If this translation is 
difficult, one might expect errors to creep in with some 
frequency. If the words used to discuss an issue coot 
accurately express the situation, or if the consensus 
achieved in a discussion cannot be fully expressed in a 
more durable representation, the results are unlikely to be 
satisfactory. 
This line of reasoning has several implications. First, 
there might be significant advantages for using “standard’ 
representations that are as compatible as possible with 
na’ive psychology. One might make the case, for 
example, that agent representations are a good fit [33], or 
even that 00 representations, since objects have both 
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state and behavior, fit well with ndive psychological 
capabilities. On the other hand, functional representations 
are relatively incompatible with naive psychology. 
Future work should examine the discussions around 
representations of various sorts to see if naSve psychology 
is o&n used in conjunction with “incompatible” 
representations, and if so, whether the translations to and 
from “talk” are difficult or error-prone. 
The second implication is that it is important to achieve a 
better understanding of the semantics of naive 
psychological representations. If we had a clearer idea d 
what it means to say, e.g., that component A should, in a 
particular scenario, “know” that component B is not 
functioning properly, then we would be in a better 
position to see if this “knowledge” is fully implemented 
in the detailed design and code. 
A third, and somewhat more radical, possibility would be 
to design specification languages that are either directly 
based on naive psychology, or that are designed to be 
easily translated. As I mentioned in the introduction, it 
has occasionally been suggested that anthropomorphic 
talk should be somehow banned because it is sloppy and 
imprecise. Perhaps we should take the opposite tack and 
adjust our standard representational machinery to 
accommodate the modes of reasoning and representing 
that actually are used by software engineers. 

A Cautionary Note 
It is important to point out that the capacity for ndive 
psychology evolved in order to understand human minds, 
not software. Human minds and software differ in many 
obvious and significant ways, regardless of the 
programming paradigm used. For example, we tend to 
think of beliefs as atomic, i.e., if I ascribe a belief p to a 
human, I assume they will always act as if they believe p, 
until they (atomically) cease to believe p. Software may 
or may not be consistent, perhaps acting sometimes as if 
it believes p, and other times as if it doesn’t (if, e.g., 
some functions check a particular piece of state, but others 
were written incorrectly and do not). Similarly, if I 
ascribe a desire to a human, I expect them to seek an 
alternative way to fulfill it if one specific path is blocked. 
Again, software is often not that smart. An interesting 
research question for the futum is to try to determine if 
these sorts of assumptions actually lead to significant 
numbers of software errors. 
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APPENDIX A: CATEGORIZATION AND 
STATISTICAL ANALYSIS 
This appendix presents some details of how the behaviors 
were categorized, and about the statistical analysis 
underlying the conclusions in the section on “Sequential 
Order of Description Types.” 

Behavior Categorization 
The sentence containing each verb phrase was entered in a 
cell in a spreadsheet. Once all the verb phrases had been 
entered, all information permitting identification of the 
phrase with a particular meeting or condition was hidden. 
This was done to ensure that the coder’s expectations 
could not influence the categorization. The sentences 
were then ordered randomly so that any “drift,” or 
unintentional change in the categorization procedure over 
time would produce only random noise rather than 
systematically affecting the results. 
A preliminary pass through part of the data was made in 
order to identity ambiguous cases where categorization 
proved difficult. A set of rules was developed in order to 
handle these ambiguous cases consistently. In all, them 
were over two pages of such rules (which are available 
from the ,author). This is sufIicient to establish a 
reasonable level of confidence that the categorization 
procedure was consistent and unbiased. 

Statistical Analysis 
A log-linear model of the hequencies in Table 1 was 
constructed, including the main effects and the cells on the 
diagonal as factors. The diagonal cells represent the 
transitions from a description type to itself. Therefore, 
testing this model is a way of determining whether, 
overall, description types tend to repeat themselves. 
The results (Table 2) show that the diagonal cells have a 
higher fkequency than would be expected based on the 
marginal frequencies alone (chi-square = 139, one degree 
of freedom, p < .OOOOOOOl). The metaphorical 
descriptions are clearly not distributed randomly 
throughout each session, but tend to occur in sequences cf 
a single type. 

Resid Resid 
Df Deviance Df Dev Pr(Chi) 

NULL . . . . . . . . . 23 . . . . 1845 
antecedent . . . . 4 . . . . . . . . 830 . . . . . . . 19 . . . . . 1015 . . . . . . . . . . 0.0000 
consequent...4 . . . . . . . . 827 . . . . . . . 15 . . . . . . 188 . . . . . . . . . . 0.0000 
ante = cons .l . . . . . . . . 139 . . . . . . . 14 . . . . . . . . 49 . . . . . . . . . . 0.0000 

Table 3. Results of log-linear model of transition 
frequencies in Table 1. 

A further analysis was conducted to rule out one 
alternative explanation of these findings. It is possible 
that the results reported above are due entirely to 
individual preferences of the meeting participants. So, ti 
example, if one speaker prefers “physical movement” 

verbs, and another prefers “naive psychological” verbs, 
then the overall data would tend to indicate that verb 
types repeat themselves simply because speakers tend to 
utter several verbs during each conversational turn. Thus, 
the individual preference could be mistaken for an overall 
tendency to stick with a single metaphor. 
In order to test this alternative explanation, a table of 
transition frequencies was constructed using only those 
transitions where the speaker changed, discarding 
transitions between consecutive descriptions uttered by 
the same speaker. This generated the following table: 

T.,‘ ., -,,: 
,.e;..;..;.,;i . . . . . . 35 . . . . . . . 2 . . . . . . . . . 9 . . . . . . . . 42 . . . . . . . . 20 ‘I_. 
: * .: 

:,: : 
_‘j, ~~~$~~*,*:c”r.&iPr . . . . . . . . 5 . . . . . . . 2 . . . . . . . . . l.......... 8 . . . . . . . . . . 6 _‘_ .:‘ ?n’ <>,?i i ,:,s xj:>: 1 ‘<:,,,I, , . C. I f .““;‘* . $ . . . . . . 14 . . . . . . . l....... 10 . . . . . . . . 15 . . . . . . . . . . 7 $+:.;$g:” .I::..‘-,’ - ,: .I, ,,“‘-‘ *,, ‘.f . .: .*,. . . . . . . 42 . . . . . . . 8 . . . . . . . 16 . . . . . . . . 90 . . . . . . . . 39 ,, ,. ., ,;.s,s..3.i;& . . . . . . 34 . . . . . . . 5 . . . . . . . 10 . . . . . . . . 34 . . . . . . . . 85 ” ,, ‘; 

_>,, 
Table 4. Transition frequencies where speaker 
changes from one description to the next. 

Again, constructing a log-linear model with main etIbds 
and the cells on the diagonal as factors, the results show 
that the diagonal factor is highly significant (chi-square = 
9.9, one degree of l?eedom, p < .002). 

Resid Resid 
lx Deviance .Df Dev Pr(Chi) 

NULL . . . . . . . . . 23 . . . . . . 423 
antecedent . . . . 4 . . . . . . . . 194.3 . . . . . 19 . . . . . 228.8 . . . . . 0.0000 
consequent...4 . . . . . . . . 209.0 . . . . . 15 . . . . . . . 19.7 . . . . . 0.0000 
ante = cons .l........... 9.9 . . . . . 14 . . . . . . . . . 9.9 . . . . . 0.0017 

Table 5. Results of log-linear model of transition 
frequencies in Table 4. 

Thus, while there may be a tendency for speakers to prefer 
a particular type of behavior description, that preference 
cannot account entirely for the overall tendency ti 
description types to occur in sequences. 
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