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ABSTRACT 
Defect-occurrence projection is necessary for the development 
of methods to mitigate the risks of software defect occurrences. 
In this paper, we examine user-reported software defect-
occurrence patterns across twenty-two releases of four widely-
deployed, business-critical, production, software systems: a 
commercial operating system, a commercial middleware system, 
an open source operating system (OpenBSD), and an open 
source middleware system (Tomcat). We evaluate the suitability 
of common defect-occurrence models by first assessing the 
match between characteristics of widely-deployed production 
software systems and model structures. We then evaluate how 
well the models fit real world data. We find that the Weibull 
model is flexible enough to capture defect-occurrence behavior 
across a wide range of systems. It provides the best model fit in 
16 out of the 22 releases. We then evaluate the ability of the 
moving averages and the exponential smoothing methods to 
extrapolate Weibull model parameters using fitted model 
parameters from historical releases. Our results show that in 
50% of our forecasting experiments, these two naïve parameter-
extrapolation methods produce projections that are worse than 
the projection from using the same model parameters as the 
most recent release. These findings establish the need for further 
research on parameter-extrapolation methods that take into 
account variations in characteristics of widely-deployed, 
production, software systems across multiple releases. 
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D.2.8 [Software Engineer ing]: Empirical Studies, Metrics, 
Reliability Engineering 
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1. INTRODUCTION 
Defect occurrences not only create problems for software 

consumers, but also cause problems in maintenance planning for 
software producers. The costly consequences of defect 
occurrences have increased interest in insuring software 
consumers against the associated risks.  

Defect-occurrence projection is crucial to the development 
of methods for managing the risks associated with defect 
occurrences. Accurate defect-occurrence projections can help 
software maintenance planners to better allocate resources and 
will be a major step towards novel risk-mitigation techniques for 
software consumers, such as software insurance. 

We examine software systems that businesses are 
increasingly dependent upon. These systems are multi-release, 
multi-platform, and widely-deployed, such as COTS and open 
source software. It is generally accepted that these widely-
deployed, production, software systems (WPSSs) are not defect 
free and that there is a need to manage the risks associated with 
the defect occurrences. 

We empirically address two questions that are important for 
defect-occurrence projection: 
• Is there a type of defect occurrence model that provides a 

good fit to defect-occurrence patterns across multiple 
releases and in many organizations? 

• Given such a model, how can model parameters for a new 
release be extrapolated using historical information? 

Our findings provide a basis for a defect-occurrence projection 
method for WPSSs that is robust across many organizations and 
development styles. 

We use data from a diverse sample of WPSSs including 
two different types of software systems (middleware and 
operating systems) developed with two different development 
styles (commercial and open source). We gather data from 
twenty-two releases: eight releases of a commercial operating 
system, three releases of a commercial middleware system, eight 
releases of an open source operating system (OpenBSD), and 
three releases of an open source middleware system (Tomcat). 

We examine characteristics of WPSSs that can change 
between releases and that may cause variations in defect-
occurrence patterns. The characteristics we consider are release 
content, development process, adoption and usage patterns, and 
software and hardware configurations in use. These 
considerations are not modeled well in prior research in this 
field. 

We examine how parameterizations of a set of candidate 
defect-occurrence models taken from the literature account for 
possible variations in defect-occurrence patterns across multiple 
releases and how two commonly-used naïve parameter-
extrapolation methods account for the variations. We 
hypothesize: 
• The Weibull model is better than other candidate models at 

modeling defect-occurrence patterns for multiple releases 
of WPSSs. 

• Naïve parameter-extrapolation methods, moving averages 
and exponential smoothing, extrapolate model parameters 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

SIGSOFT’04/FSE-12, Oct. 31–Nov. 6, 2004,Newport Beach, CA, USA. 
Copyright 2004 ACM 1-58113-855-5/04/0010...$5.00. 

263



that produce inadequate defect-occurrence projections for 
new releases of WPSSs. 

Determining the preferred defect model is important for defect-
occurrence projection because it may allow us to understand and 
quantify the effects of changes in characteristics of WPSSs 
across multiple organizations and development styles. Verifying 
that naïve parameter-extrapolation methods are inadequate is 
important because it will motivate additional research questions 
on new methods for parameter extrapolation. Our results show 
that the Weibull model is the preferred model and that naïve 
parameter-extrapolation methods are inadequate. 

We begin by providing background and descriptions in 
Section 2. We present analyses that support our two hypotheses 
and the empirical results in Sections 3 and 4. We conclude with 
validity issues and future work in Section 5. 

2. BACKGROUND AND DESCRIPTIONS 
We are interested in real-world software systems deployed 

today that are of key business interest to users, such that there 
are users who pay for maintenance contracts and who may be 
willing to pay to insure against defect occurrences. 

2.1 Defect occurrence 
We define a defect occurrence as a user-reported problem 

that requires developer intervention to correct. This is the 
observable event of interest for both maintenance and insurance 
purposes.  

The operational definition of a defect occurrence varies 
across organizations. In this paper, we use the same approach to 
analyze defect occurrences in different organizations and show 
that our approach is resilient to organizational differences. The 
commercial software development organizations measure faults 
and failures, described in Section 2.2.1, while open source 
software projects track user-submitted bug-reports, described in 
Section 2.2.2. Our findings support the idea that a common 
defect-occurrence projection method for WPSSs can be used 
across many organizations and development styles. 

We are interested the defect-occurrence pattern, which is 
the rate of defect occurrence as a function of time over the 
lifetime of a release. We define the lifetime of a release as the 
duration of time between when a release becomes generally 
available and when there are no defect occurrences reported to 
the software development organization for three consecutive 
time intervals. Determining the lifetime of a release is discussed 
in detail in [15, Appendix C].  

Our focus on the defect occurrence pattern is different from 
previous research on the total number of defects [5] and the 
normalized defect-occurrence rate. The normalized defect-
occurrence rate is the rate of defect occurrences normalized with 
respect to the number of deployed systems and the usage amount 
over the lifetime of a release [4][18][19][20][29]. Knowing only 
the total number of defects is inadequate because resource 
allocation for maintenance planning and cash reserve 
management for insurance both require knowledge of how many 
defects are going to occur in a given time period. The 
normalized defect-occurrence rate is unsuitable because it 
requires accurate measurements of deployment and usage 
patterns. As we explain in the next section, unknown 
deployment and usage patterns are properties of WPSSs.  

2.2 Widely-deployed production software 
systems 

We are interested in widely-deployed, production, software 
systems (WPSSs), which are software systems with the 
following properties: 
• The software system is used in many software and 

hardware configurations (some unforeseen). 
• The deployment and usage patterns of the software system 

are unknown. 
• The development process of software system has 

constraints (such as scheduling and resource constraints). 
• The contents of the software system change over time. 
• The software system has multiple releases. 

2.2.1 Commercial software systems 
Nearly all COTS software systems have the properties of 

WPSSs. COTS software systems are not developed with one 
client in mind but rather to be sold on the open market and to be 
used by many clients [2]. The systems are typically built to run 
on multiple hardware platforms, to be compatible with many 
different hardware devices, and to be compatible with many 
other software systems. Constraints exist on the development 
process, such as pre-set release dates and limited resources. The 
software development organization has limited information on 
who is going to purchase the software system and puts out 
successive versions of the software system, which implements 
new functionality and improvements [12]. 

The two COTS software systems we examine are developed 
by two different divisions of IBM. The operating system is a 
mature product with many years of presence in the marketplace. 
The commercial middleware system has a few years of 
deployment history and a growing customer base. 

The defect-occurrence data collected are code-related 
problems discovered and reported by customers after 
deployment. A more detailed description of the data collection 
process is in [15, Appendix E]. The defect-occurrence data for 
the operating system contain unique field defects that led to 
code changes by the product support organization. The defect-
occurrence data for the middleware system contain all field 
defects (which may not be unique) that lead to code changes. 
The defect-occurrence data are processed and aggregated, so for 
each data set we use the interval in that data set. The time 
interval for the middleware system is a month and the time 
interval for the operating system is a quarter. 

2.2.2 Open source software systems 
Open source software systems have all the properties of 

WPSSs. A consortium of user-developers with different needs 
(generally with one person or a core group leading development) 
develops an open source software system. A successful project 
has diverse user-developers that develop and test the software 
system, port the software system to many platforms, make it 
operable with many devices, and make it compatible with other 
software systems. Hence, the number of active user-developers 
constrains an open source project. The software system can be 
downloaded and used anonymously, so there is limited 
knowledge about the users. Open source software systems 
usually evolve in successive releases to satisfy the needs of its 
user-developers [25]. 

The open source software systems we examine are 
developed by successful open source projects with many user-
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developers from around the world. The open source operating 
system is OpenBSD. OpenBSD is a Unix-like operating system 
that emphasizes portability, standardization, correctness, 
proactive security, and integrated cryptography [21]. The open 
source middleware system is Tomcat, which is one of the 
products developed by the Jakarta Project. Tomcat is the servlet 
container used in the official reference implementation for the 
Java Servlet and JavaServer Pages technologies [7]. 

The defect-occurrence data collected are bug reports 
submitted by users via the web based bug-tracking system. A 
more detailed description of the data collection process is in [15, 
Appendix E]. Unlike users of a commercial software system, 
user-developers of an open source software system can obtain 
the software system anytime during development and submit 
bug reports. Many bugs are duplicates, user mistakes, or 
otherwise invalid submissions that do not require code changes. 
However, we include all user-reported bug reports in our data 
set because a member of the core development team examines 
each bug submission and decides upon a course of action. The 
time interval used for both open source software systems is a 
month. 

2.2.3 Related work 
Much of the prior research in software reliability has been 

conducted on systems where the testing environment and the 
deployment environment are similar. Similarities like software 
and hardware configurations and usage patterns have allowed 
researchers to extend defect-occurrence patterns from 
development into the field. Lyu in [16] provides a 
comprehensive review of previous works. Lyu explains model 
origins, states modeling assumptions, and classifies commonly 
used reliability models. We borrow mathematical models and 
statistical tools from prior research, however extending defect-
occurrence patterns is inappropriate for WPSSs given properties 
discussed in Section 2.2. 

Current efforts to certify software are very similar to prior 
research in software reliability engineering. Voas advocates 
certifying commercial software for use in a customer’s 
environment [28], and Wallnau et. al. at the Software 
Engineering Institute are conducting research on predictable 
assembly from certified components [14]. Both approaches test 
software in the customer’s environment then extend results into 
usage. These approaches account for several environmental 
variables and make statistical guarantees about various 
properties. However, we feel that cost, variance, and unforeseen 
confounds at the single-customer level might make such 
methods impractical. We do however, leverage relationships 
between characteristics of software systems and defect 
occurrences discovered in their research.  

Several on-going research efforts examine defect 
occurrences across multiple releases. Ostrand and Weyuker use 
software content and development process measures to predict 
faulty files in multiple releases of two software systems at 
AT&T [22]. Their model predicts the top 20% faultiest files, 
which they show to capture around 80% of faults found during 
development and in the field. The COQUALMO project at USC 
uses COCOMO II data to estimate the total number of defects in 
a software system [5]. Their model uses size metrics and various 
process modifiers. The process modifiers measure aspects of the 
defect injection process and the defect removal process. Jones 
et. al at Nortel use the percentage of deployed systems with a 

module installed as a surrogate for usage along with software 
content measures to predict the likelihood that a module will be 
faulty in the field [10]. They correctly identify approximately 
70% of the faulty modules while misidentifying less than 26% 
of the faulty modules. These research projects contribute 
knowledge about the important predictors of defect occurrences.  
However, none of the projects examines the defect-occurrence 
pattern. As noted in Section 2.1, risk mitigation techniques need 
to know both the expected total number of defect occurrences as 
well as when those defect occurrences happen in the lifetime of 
a release.  

Mockus et. al. use software content and development 
process information captured in the change management and 
CVS systems to predict the amount of repair effort and the delay 
until the effort is needed for eleven releases of a 
telecommunications software system at Avaya [17]. They 
assume that field repair effort is proportional to development 
effort and estimate a delay factor and an effort multiplier. Our 
work is similar. However, our focus is on defect-occurrence 
patterns, while the focus at Avaya is on effort.  

Popstajanova et. al in [23] uses architecture, utilization, 
and control flow information to predict the likelihood of defect 
occurrences. Unlike their white box approach, our approach is 
black box.   

Previous works have also compared defect-occurrence 
models. Jones compares various models and the MLE and least 
squares model fitting methods for ten releases of a 
telecommunications software system at Northern Telecom and 
Bell Canada [9]. He concludes that the Logarithmic model, 
fitted using the least squares method, produces the best results 
and that the least squares method is superior to the MLE method 
overall. Jones considers a Weibull process model. Wood 
compares eight mathematical models fitted using the least 
squares method for four releases of a software system at Tandem 
computers [29]. Wood considers the Weibull model but finds 
that the Exponential is the best model in his environment. Their 
works lack an underlying theory explaining why a model is 
superior in their environment, and they do not replicate their 
experiment at other organizations. We develop a theory for the 
causes of variation in defect-occurrence patterns for WPSSs and 
compare models across multiple releases, multiple 
organizations, and multiple products.  

There appears to be no published work on projecting 
defect-occurrence patterns for open source projects. We note 
that software systems are becoming so complex and expensive 
that few organizations have the resources to build custom 
systems. More and more organizations reply on COTS or open 
source software systems, which is the focus of this paper.  

2.3 Character istics of WPSSs 
Content, development process, deployment and usage 

patterns, and software and hardware configurations in use are 
characteristics of WPSSs that tend to change, sometimes 
dramatically, between releases. The effect of changes on defect-
occurrence patterns will dictate which defect-occurrence model 
is best suited to model defect-occurrence patterns in multiple 
releases and which parameter-extrapolation methods are 
effective. We use results from previous work in software 
reliability engineering and intuitive arguments to provide 
evidence that the characteristics listed above can influence 
defect-occurrence patterns across multiple releases. 

265



2.3.1 Content 
Software content affects defect-occurrence patterns across 

multiple releases [11][17]. Successive releases incrementally 
add features and implement internal changes, such as 
refactoring. Some modifications may be more difficult and 
defect prone than others, which may cause more defect 
occurrences over a longer time period. Depending on the 
similarity of content changes, the defect-occurrence pattern of a 
release may be similar to one release but be substantially 
different from another. 

2.3.2 Development process 
The development process affects defect-occurrence patterns 

across multiple releases [12][7]. Although the development 
process of most organizations changes slowly over time, when 
combined with other factors the development process may have 
significant impact on defect-occurrence patterns. Insufficient 
and varying testing resources and schedule pressure may lead to 
ineffective defect removal. This can cause defects to linger in 
the system and can cause blocking, which occurs when one 
defect masks the presence of other defects. However, problems 
with the development process may not be present to the same 
degree in every release, which may cause defect-occurrence 
patterns to vary. 

2.3.3 Deployment and usage patterns 
Deployment and usage patterns affect defect-occurrence 

patterns across multiple releases [3][16]. The total number of 
deployed systems and the pattern of deployment dictate how 
much usage and how many usage patterns are possible. 
Deployment may be different for each release because users 
cannot be forced to adopt the latest release. Some users may 
adopt every release, while others may only adopt releases that 
contain important functionality. In addition, some users may 
adopt a release immediately, while other may delay adoption. 
The usage patterns may also be different from release to release 
and from user to user. Some users may not heavily exercise the 
software until the software has shown to be satisfactory under 
normal operating conditions. Deployment and usage patterns 
dictate how heavily the system is exercised, which may cause 
variations in defect-occurrence patterns.  

2.3.4 Software and hardware configurations in use 
Software and hardware configurations in use affect defect-

occurrence patterns across multiple releases [14][28]. The 
software development organization has limited knowledge about 
users, and thus may not be able to test all possible hardware and 
software configurations. Furthermore, comprehensive testing 
may not be feasible given economic and scheduling constraints. 
Therefore, the software may have defects that are specific to 
certain configurations, software interactions, and other special 
conditions, such as malicious attacks. 

3. DEFECT-OCCURRENCE MODELS  
A single type of defect-occurrence model may be able to 

model defect-occurrence patterns across multiple releases of a 
wide variety of WPSSs. We believe such a model exists despite 
possible changes in characteristics discussed in Section 2.3 
because of similarities between releases and properties common 
to all WPSSs. Bassin and Santhanam at IBM have shown that 
successive releases have similarities in the functionalities 
implemented, the development organization, and users with 
similar usage patterns [1]. All WPSSs also share common 
properties mentioned in Section 2.2.  

In order for a model to be widely applicable, it needs to 
have parameterization that can account for variations in defect-
occurrence patterns. In this section, we develop and use real-
world data to empirically test the hypothesis that the Weibull 
model is better than other candidate models in modeling defect-
occurrence patterns for multiple releases of WPSSs. 

3.1 Candidate models 
We are interested in the defect-occurrence pattern. 

Therefore, we are interested in models that model the number of 
defect occurrences in each time period over the lifetime of a 
release. We consider the Exponential model, the Gamma model, 
the Logarithmic model, the Power model, and the Weibull 
model. These models are promising because prior research in 
software reliability engineering has shown each model to be 
effective at modeling defect-occurrence patterns at a software 
development organization [9][16][29]. Each model is 
parametric. The number of defect occurrences during the t-th 
time interval is determined by the model parameterization and 
the current time interval. The number of defect occurrences 
within a time interval is modeled as a non-homogenous Poisson 
process with a stationary defect rate 

�
(t). Table 1 lists the 

models. Lyu [16] provides details about the models, including 
researchers who have developed and applied the models in 
practice. 

3.2 The Weibull model  
The Weibull model can account for different increasing and 

decreasing trends, which reflect initial increases and eventual 
decreases in defect occurrences. We generally expect early 
defect occurrences to show a primarily increasing trend as users 
migrate to the release, exercise the software, and report defects, 
and we expect later defect occurrences to show a primarily 
decreasing trend as the rate of adoption declines and the release 
becomes more reliable due to defect removal. 

The Weibull model has three parameters N, � , and � . 
Intuitively, the Weibull model can be broken down into three 
interacting pieces: N, representing the total number of defect

Table 1. Candidate models 

Model type Model name Model form Researchers/users of the model 

Exponential Non-homogenous Poisson process model � (t) = N �  e 
– �  t Goel & Okumoto  

Weibull Weibull � (t) = N �  �  t 
� -1

 e 
–  �  t �

 Schick-Wolverton  

Gamma S-shaped reliability growth model � (t) = N  �  �
 t 

� -1
 e 

–  �  t
 Yamada, Ohba & Osaki  

Power Duane Model � (t) = �  �  e 
– �  t

 Duane 

Logarithmic Musa-Okumoto logarithmic Poisson model � (t) = �  ( �  �  t +1) 
– 1

 Musa-Okumoto  
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occurrences in the lifetime of the release, a generally increasing 
component �  �  t 

� -1
 , which dominates early, and a decreasing 

component e 
– �  t �

 , which dominates as time increases. 
N can be different for each release, which can account for 

differences in the total number of defect occurrences between 
releases.  The differences may be caused by changes in software 
content or development processes. 

In general, �  �  t 
� -1

 increases as a function of time and can 
account for increases in defect occurrences. The rate of growth is 
controlled by a combination of the �  and �  parameters. The 
increasing component is flexible enough to describe both concave 
and convex increasing patterns. Concave increasing patterns can 
occur when the growth in the rate of defect occurrences is faster at 
the beginning of the release, which may occur if many users 
quickly adopt and use a release. Convex increasing patterns can 
occur when the rate of defect occurrences increase slowly. This 
may occur if users slowly migrate to the release or if constraints 
on development and problematic content cause blocking, which 
prevents defects from being discovered.  

The term e
– �  t �

 decreases as a function of time and can 
account for decreases in defect occurrences. Again, the rate of 
decrease is controlled by a combination of the �  and �  parameters. 
The decreasing component can describe concave or convex 
decreasing patterns. Convex decreasing patterns can occur when 
the rate of defect occurrences decrease rapidly, which may occur 
if there is fast migration to a new release. Concave patterns can 
occur when the rate of defect occurrences decrease slowly, which 
may occur if defect occurrences remain high over a longer time 
period due to constraints on development or problematic content. 

It is reasonable to expect a model with parameterization that 
can describe varying defect-occurrence patterns such as the 
Weibull model to be better than other candidate models. The 
Exponential, the Power, and the Logarithmic models do not have 
both decreasing and increasing components. They cannot describe 
the interplay of increasing and decreasing trends. Although the 
Gamma model has both increasing and decreasing components, its 
decreasing component is generally convex. Thus, the Gamma 
model is unable to describe situations in which the decreasing 
pattern is concave. Kenny [11] has studied the interaction of 
increasing and decreasing trends in defect-occurrence patterns in 
commercial software systems and recommends using the Weibull 
model to model defect-occurrence patterns. 

We hypothesize that the Weibull model is better than other 
candidate models at modeling defect-occurrence patterns for 
multiple releases of WPSSs. 

3.3 Model fitting and model selection 
We fit the best set of parameters for each candidate model for 

each release using Non-linear Least Squares (NLS) regression 
then compare the candidate models using the Akaike Information 
Criterion (AIC) model selection criterion [27]. 

NLS is a well-established model fitting procedure that selects 
model parameters by minimizing the square of the difference 
between fitted values and actual values [27]. It is widely used in 
defect modeling research [9][29]. We use the open source 
statistical computing package R [24]. After we select the best 
parameters for each candidate model for a given release, we use 
the AIC model selection criterion to evaluate the fit of the 
different candidate models; lower AIC scores are better. The AIC 
score is defined as: 

AIC =  n  log �  
2   + 2  |S| 

where � 2 is the residual squared error divided by the difference of 
the number of observations, n, and the number of model 
parameters, S [27]. The AIC model selection criterion penalizes 
models with more parameters to offset the advantage models with 
more parameters have in comparisons. 

Our hypothesis stated in Section 3.2 would be supported if 
the Weibull model consistently produces lower AIC score.  

Tables 2-5 present the AIC scores. The best AIC scores for 
each release are highlighted (shaded cells highlight the best AIC 
scores among fitted candidate models). INF and Singular Gradient 
indicate that the model-fitting algorithm is unable to fit 
parameters for the model, which suggests that the model is 
inappropriate. A detailed explanation of the failure to fit model 
parameters and why it suggests a model is inappropriate is given 
in [15, Appendix B]. 

Table 2. AIC scores for  commercial OS  

Release/ 
Model 

Exponential 
Model 

Weibull 
Model 

Gamma 
Model 

Power 
Model 

Logarithmic 
Model 

i 158 131 144 164 160 

i + 1 119 110 111 131 126 

i + 2 159 150 155 175 169 

i + 3 104 105 111 113 109 

i + 4 116 111 109 121 118 

i + 5 104 87 89 105 104 

i + 6 62 64 64 62 62 

i + 7 
Singular 
Gradient 

63 63 66 
Singular 
Gradient 

 Table 3. AIC scores for  commercial middleware system 

Release/ 
Model 

Exponential 
Model 

Weibull 
Model 

Gamma 
Model 

Power 
Model 

Logarithmic 
Model 

i 153 134 134 163 157 

i + 1 
Singular 
Gradient 

173 171 195 
Singular 
Gradient 

i + 2 
Singular 
Gradient 

116 116 129 
Singular 
Gradient 

Table 4. AIC scores for  open source OS  

Release 
\Model 

Exponential 
Model 

Weibull 
Model 

Gamma 
Model 

Power 
Model 

Logarithmic 
Model 

2.6 167 124 129 173 170 

2.7 162 91 103 176 171 

2.8 182 134 136 188 185 

2.9 135 97 88 143 139 

3.0 110 83 90 113 112 

3.1 170 168 166 173 171 

3.2 88 84 85 101 99 

3.3 91 73 76 93 91 

Table 5. AIC scores for  open source middleware system  

Release 
/Model 

Exponential 
Model 

Weibull 
Model 

Gamma 
Model 

Power 
Model 

Logarithmic 
Model 

3.3 INF 157 157 193 192 

4.0 INF 215 219 275 275 

4.1 INF 77 78 92 93 

 

267



Figure 1 shows fitted candidate models for a representative 
sample of releases from each of the four WPSSs. Due to 
confidentiality agreements, only the figures for open source 
software systems have numbered axes. Plots of all fitted candidate 
models are in [15, Appendix A]. 

Tables 2-5 show that the Weibull model has the best AIC 
score or one of the best AIC scores in 16 out of 22 or 73% of the 
releases. This is considerably better than the next best model, 
which is the Gamma model with the best AIC score or one of the 
best AIC scores in 8 out of 22 or 36% of the releases. 
Furthermore, since the AIC is a measure of deviance, it roughly 
follows a � 2 (chi-squared) distribution, which makes 4 a rough 
95% confidence band around an AIC score. We note that the 
Weibull is within the 95% confidence band of the best AIC score 
in all but one of the releases. These results support our hypothesis 
that the Weibull model is the preferred model. 

3.4 Validation of the Weibull model 
We have shown that the Weibull is better than other 

candidate models. However, we still need to show that the 
Weibull model adequately describes the defect-occurrence 

pattern. We use the Theil forecasting statistic to validate the 
Weibull model.  

The Theil statistic compares the forecast for each time 
interval i against a no-change forecast based on the previous time 
interval's value [26]. 

 
The Theil statistic U is greater or equal to zero. The term Pi 

is the projected change and Ai is the actual change in interval i. A 
Theil statistic of zero indicates perfect forecasts with Pi = Ai. A 
Theil statistic of one indicates that forecasts are no better than no-
change forecasts with Pi = 0. Values greater than one indicate 
forecasts are worse than no-change forecasts. 

The Theil statistics shown in Figure 2 indicate that the best-
fit Weibull is always better than the no-change forecast.  

We conclude that the Weibull model is the preferred model 
because the Weibull model is better than other candidate models 
based on AIC scores in Section 3.3 and is good at projecting 
defect occurrences based on Theil statistics. Further validation is 
in [15, Appendix F]. 

 

 
Figure 1. Samples of fitted candidate models 

U 2= 

�
 (Pi – Ai )

2 

�
 Ai 

2 
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Figure 2. Plots of best-fit Weibull models 
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4. NAÏVE MODEL PARAMETER 
EXTRAPOLATION METHODS  

Section 3.4 establishes the Weibull model as the preferred 
model. However, in order to project defect occurrences we still 
need to extrapolate model parameters for each new release. Naïve 
parameter-extrapolation methods that do not consider the changes 
in characteristics described in section 2.3 may extrapolate 
parameters that result in poor forecasts. In this section, we 
develop and empirically test the hypothesis that the moving 
averages and exponential smoothing methods are inadequate. 

4.1 The moving averages method and the 
exponential smoothing method 

Both the moving averages and exponential methods are well-
established time series methods that represent intuitive, 
reasonable, and fairly common methods for extrapolating model 
parameters. The moving averages method extrapolates parameters 
by taking the average of the best-fit model parameters from the 
previous k releases. Exponential smoothing is similar, except 
more recent releases are given more weight, since intuitively more 
recent releases should be better predictors of the current release. 
Eick et. al. [6] have used a similar method to predict software 
defect rates for various software modules. 

4.2 Inadequacies of naïve methods 
Naïve parameter-extrapolation methods may not account for 

variations in defect-occurrence patterns because the methods do 
not consider changes in content, development process, 
deployment and usage patterns, and software and hardware 
configurations in use between releases. For example, consider a 
major release and a minor release. A major release that 
implements new functionality can have significant changes in 
content, production, and usage. New functionality can lead to 
substantial code changes and additions. If the schedule is fixed or 
if there is an insufficient number of trained testers then 
development constraints may cause inadequate testing. Finally, 
there may be many more adopters if the functionality being 
implemented is important to the users. A minor release that offers 
only minimal improvements over a previous release would have 
none of the above-mentioned conditions. We expect defect-
occurrence patterns in the two releases to be drastically different. 
However, naïve parameter-extrapolation methods do not account 
for the differences. 

We hypothesize that the two naïve parameter-extrapolation 
methods extrapolate model parameters that produce inadequate 
defect-occurrence projections for multiple releases of WPSSs. 

4.3 Model parameter  extrapolation and 
forecast evaluation  

We evaluate naïve parameter-extrapolation methods by 
extrapolating model parameters and then examining the Theil 
forecasting statistics of the projected defect occurrences. Our 
hypothesis in section 4.2 will be supported if the two naïve 
parameter-extrapolation methods fail to consistently produce 
Theil statistics that are less than one and if the Theil statistics do 
not consistently improve with more data. 

We increase the validity of our results by making the 
simplifying assumption that the total number of defect 
occurrences is known. Prior research has already shown that two 

different software releases are likely to have different total 
numbers of defect occurrences [5][17]. We remove the possible 
confound by providing estimates of the total number of defects.  
We show that naïve parameter-extrapolation methods are 
inadequate even with this simplification. This topic is discussed in 
detail in [15, Appendix D]. 

Tables 6-9 present fitted �  and �  parameters and Figure 2 
presents plots of the best-fit Weibull models. We theorize that 
changes in characteristics described in Section 2.3 cause the 
variation in the parameter values. 

Table 10 and 11 present Theil statistics resulting from using 
the moving averages and exponential smoothing methods to select 
the �  and �  model parameters of the Weibull model. The total 
number of defects is assumed to be given and is approximated by 
the total number of defects generated by the best-fit Weibull 
model. 

We evaluate the benefits of including more historical 
information for naïve parameter-extrapolation methods by 
comparing the Theil statistics produced using multiple releases 
against the Theil statistics produced using model parameters of 
the most recent release as the model parameters for a new release. 
Improvements are possible since Theil statistics in tables 10 and 
11 indicate that in 9 out of 18 or 50% of the forecasting 
experiments, using model parameters from the most recent release 
result in projections that are no better than no-change forecasts. 
(The exponential smoothing and moving averages methods are 
identical when extrapolating parameters using only data from the 
most recent release, thus their results are the same.) However, 
results show that projections do not improve if we incorporate 
additional historical information. There are 88 total forecasting 
experiments for the two naïve parameter-extrapolation methods 
using data from two or more releases. In 44 out of 88 or 50% of 
the forecasting experiments, Theil statistics show no improvement 
over values from column one release (shaded cells in tables 10 
and 11 highlight values showing no improvement). Incorporating 
additional historical information failed to improve Theil statistics.  

Table 6. Model parameters for  commercial OS 

Param 
/Rel 

i i+1 i+2  i+3 i+4 i+5 i+6 i+7 

�  2.58  1.56  1.38  1.11  1.57  1.90  0.89  2.12 
�

 9.00  7.07  6.91  6.45 7.37  8.63  131.37 10.97 

Table 7. Model parameters for  commercial middleware system 

Parameter 
/Release 

i i+1  i+2 

�  1.72 2.05 2.81 
�

 10.58 17.75 14.97 

Table 8. Model parameters for  open source OS 

Param 
/Rel 

2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 

�  2.70  2.22 2.79  2.28  2.51  1.86  1.37  2.40 
�

 6.69  5.33  6.83  4.66  5.69  5.45  3.65  5.99 

Table 9. Model parameters for  open source middleware system 

Parameter 
/Release 

3.3 4.0 4.1 

�  4.19  3.84 2.21 
�

 15.44  16.89 8.39 
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Table 10. Theil forecasting statistics for  projections with the 
moving averages method 

Releases/ 
System 

one 
release 

two 
releases 

three 
releases 

four 
releases 

five 
releases 

six 
releases 

seven 
releases 

Commercial 
MW R i+1 2.26             

Commercial 
MW R i+2 1.00 1.11           

Open source 
MW R4.0 0.94             

Open source 
MW R4.1 2.07 2.07           

Commercial 
OS R i+1 0.98             

Commercial 
OS R i+2 0.50 0.88           

Commercial 
OS R i+3 0.56 0.61 0.86         

Commercial 
OS R i+4 0.74 0.66 0.61 0.56       

Commercial 
OS R i+5 0.94 1.30 1.29 1.22 0.89     

Commercial 
OS R i+6 7.33 7.44 7.43 7.46 7.52 7.63   

Commercial 
OS R i+7 3.67 3.76 3.54 3.21 2.98 2.79 2.74 

Open source 
OS R2.7 1.13             

Open source 
OS R2.8 1.06 0.70           

Open source 
OS R2.9 1.32 0.93 1.04         

Open source 
OS R3.0 0.87 0.42 0.43 0.44       

Open source 
OS R3.1 0.72 0.70 0.73 0.71 0.73     

Open source 
OS R3.2 0.76 0.91 0.87 0.99 0.97 1.02   

Open source 
OS R3.3 1.56 1.10 0.85 0.86 0.66 0.66 0.57 

Table 11. Theil forecasting statistics for  projections with the 
exponential smoothing method 

Releases/ 
System 

one 
release 

two 
releases 

three 
releases 

four 
releases 

five 
releases 

six 
releases 

seven 
releases 

Commercial 
MW R i+1 2.26             

Commercial 
MW R i+2 1.00 1.05           

Open source 
MW R4.0 0.94             

Open source 
MW R4.1 2.07 2.07           

Commercial 
OS R i+1 0.98             

Commercial 
OS R i+2 0.50 0.81           

Commercial 
OS R i+3 0.56 0.60 0.77         

Commercial 
OS R i+4 0.74 0.67 0.63 0.57       

Commercial 
OS R i+5 0.94 1.24 1.24 1.21 1.06     

Commercial 
OS R i+6 7.33 7.42 7.41 7.43 7.46 7.50   

Commercial 
OS R i+7 3.67 3.77 3.68 3.56 3.50 3.47 3.48 

Open source 
OS R2.7 1.13             

Open source 
OS R2.8 1.06 0.76           

Open source 
OS R2.9 1.32 1.00 1.06         

Open source 
OS R3.0 0.87 0.43 0.44 0.42       

Open source 
OS R3.1 0.72 0.70 0.72 0.71 0.72     

Open source 
OS R3.2 0.76 0.88 0.86 0.93 0.93 0.95   

Open source 
OS R3.3 1.56 1.18 0.99 0.98 0.87 0.86 0.82 

Not only do naïve parameter-extrapolation methods fail to 
improve projections with additional data, they produce poor 
projections overall. Theil statistics are greater than or equal to one 
in 39 out of 88 or 44% of the forecasting experiments. Moving 
averages produced poor projections in 43% of the forecasting 
experiments. Exponential smoothing produced poor projections in 
45% of the forecasting experiments. Similar results are produced 
when we use the naïve parameter-extrapolation methods to 
extrapolated model parameters for the Gamma model. The details 
are in [15, Appendix F]. 

We conclude that there is strong empirical evidence that the 
Weibull model is the preferred model for modeling defect-
occurrence patterns of WPSSs across multiple releases and that 
the naïve parameter-extrapolation methods, moving averages and 
exponential smoothing, are inadequate in extrapolating model 
parameters of the Weibull model for defect-occurrence projection. 

5. VALIDATION AND FUTURE WORK  
Our research aims to deal with the real world consequences 

of defect occurrences in WPSSs. Maintenance planning and 
software insurance are two methods that can deal with the 
consequences [13], and both need accurate defect-occurrence 
projections. This paper set out to address two questions that are 
important for defect-occurrence projection: is there a type of 
defect model that provides a good fit to defect-occurrence patterns 
across multiple releases and in many organizations, and how can 
model parameters for a new release be extrapolated using 
historical information. 

We have examined historically effective defect-occurrence 
models. There is extensive defect-occurrence modeling research 
history to support our belief that our collection of models is well-
suited for modeling software defect-occurrence patterns. Despite 
these efforts, it is possible that a better defect model exists, and 
we strongly encourage others to replicate our approach using a 
wider array of models. 

The difference in definition of defect occurrences and the 
time interval used between the software systems strengthens our 
finding that the Weibull model is the preferred model, since 
despite the differences in definition, the Weibull model still 
proved superior.  There may be other meaningful ways of 
counting defects where the Weibull model does not perform as 
well.  Only future research can address this issue. 

We have attempted to establish the external validity by 
including two different types of software systems (middleware and 
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operating systems) developed with two different development 
styles (commercial and open source). It is not yet clear how 
adequately this sample represents the population of WPSSs.  We 
regard this as a promising start, but future research should sample 
additional parts of the WPSS space. 

The goal of our research is to develop a defect-occurrence 
projection method that produces defect-occurrence projections 
that are better than post-facto fits. Our results show that naïve 
parameter-extrapolation methods are never better than the post-
facto, best-fit, Weibull model (Theil statistics in Figure 2 and 
Tables 10 and 11). However, a post-facto fit chooses model 
parameters that minimize the residual error for all data points 
simultaneously, which does not necessarily produce the best 
model parameters for each data point. It may be possible to 
produce better projections than the post-facto fit by updating a-
priori projections as more information becomes available, such as 
after the arrival of field defect-occurrence data or after the release 
of software patches. 

Our results in this paper indicate that the Weibull model is 
the preferred model for modeling defect-occurrence patterns for 
multiple releases of WPSSs and that the naïve parameter-
extrapolation methods are inadequate. We have claimed that we 
expected the naïve parameter-extrapolation methods to fail 
because they do not account for differences in content, 
development process, deployment and usage patterns, and 
software and hardware configurations in use. The next step should 
be to improve parameter-extrapolation methods by predicting the 
effects on model parameters resulting from changes in 
characteristics of widely-deployed, production, software systems. 
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