
Empirical Evaluation of Defect Projection Models for
Widely-deployed Production Software Systems

Paul Luo Li, Mary Shaw, Jim Herbsleb
Institute for Software Research International

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

{paul.li,mary.shaw,jim.herbsleb}@cs.cmu.edu

Bonnie Ray, P.Santhanam
Center for Software Engineering

IBM T.J. Watson Research Center
Hawthorne, NY 10532

{bonnier,pasanth}@us.ibm.com

ABSTRACT
Defect-occurrence projection is necessary for the development
of methods to mitigate the risks of software defect occurrences.
In this paper, we examine user-reported software defect-
occurrence patterns across twenty-two releases of four widely-
deployed, business-critical, production, software systems: a
commercial operating system, a commercial middleware system,
an open source operating system (OpenBSD), and an open
source middleware system (Tomcat). We evaluate the suitability
of common defect-occurrence models by first assessing the
match between characteristics of widely-deployed production
software systems and model structures. We then evaluate how
well the models fit real world data. We find that the Weibull
model is flexible enough to capture defect-occurrence behavior
across a wide range of systems. It provides the best model fit in
16 out of the 22 releases. We then evaluate the ability of the
moving averages and the exponential smoothing methods to
extrapolate Weibull model parameters using fitted model
parameters from historical releases. Our results show that in
50% of our forecasting experiments, these two naïve parameter-
extrapolation methods produce projections that are worse than
the projection from using the same model parameters as the
most recent release. These findings establish the need for further
research on parameter-extrapolation methods that take into
account variations in characteristics of widely-deployed,
production, software systems across multiple releases.

Categor ies and Subject Descr iptors
D.2.8 [Software Engineer ing]: Empirical Studies, Metrics,
Reliability Engineering

Keywords

Defect modeling, empirical research, COTS, open source
software, maintenance resource planning, software insurance

1. INTRODUCTION
Defect occurrences not only create problems for software

consumers, but also cause problems in maintenance planning for
software producers. The costly consequences of defect
occurrences have increased interest in insuring software
consumers against the associated risks.

Defect-occurrence projection is crucial to the development
of methods for managing the risks associated with defect
occurrences. Accurate defect-occurrence projections can help
software maintenance planners to better allocate resources and
will be a major step towards novel risk-mitigation techniques for
software consumers, such as software insurance.

We examine software systems that businesses are
increasingly dependent upon. These systems are multi-release,
multi-platform, and widely-deployed, such as COTS and open
source software. It is generally accepted that these widely-
deployed, production, software systems (WPSSs) are not defect
free and that there is a need to manage the risks associated with
the defect occurrences.

We empirically address two questions that are important for
defect-occurrence projection:
• Is there a type of defect occurrence model that provides a

good fit to defect-occurrence patterns across multiple
releases and in many organizations?

• Given such a model, how can model parameters for a new
release be extrapolated using historical information?

Our findings provide a basis for a defect-occurrence projection
method for WPSSs that is robust across many organizations and
development styles.

We use data from a diverse sample of WPSSs including
two different types of software systems (middleware and
operating systems) developed with two different development
styles (commercial and open source). We gather data from
twenty-two releases: eight releases of a commercial operating
system, three releases of a commercial middleware system, eight
releases of an open source operating system (OpenBSD), and
three releases of an open source middleware system (Tomcat).

We examine characteristics of WPSSs that can change
between releases and that may cause variations in defect-
occurrence patterns. The characteristics we consider are release
content, development process, adoption and usage patterns, and
software and hardware configurations in use. These
considerations are not modeled well in prior research in this
field.

We examine how parameterizations of a set of candidate
defect-occurrence models taken from the literature account for
possible variations in defect-occurrence patterns across multiple
releases and how two commonly-used naïve parameter-
extrapolation methods account for the variations. We
hypothesize:
• The Weibull model is better than other candidate models at

modeling defect-occurrence patterns for multiple releases
of WPSSs.

• Naïve parameter-extrapolation methods, moving averages
and exponential smoothing, extrapolate model parameters

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGSOFT’04/FSE-12, Oct. 31–Nov. 6, 2004,Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010...$5.00.

263

that produce inadequate defect-occurrence projections for
new releases of WPSSs.

Determining the preferred defect model is important for defect-
occurrence projection because it may allow us to understand and
quantify the effects of changes in characteristics of WPSSs
across multiple organizations and development styles. Verifying
that naïve parameter-extrapolation methods are inadequate is
important because it will motivate additional research questions
on new methods for parameter extrapolation. Our results show
that the Weibull model is the preferred model and that naïve
parameter-extrapolation methods are inadequate.

We begin by providing background and descriptions in
Section 2. We present analyses that support our two hypotheses
and the empirical results in Sections 3 and 4. We conclude with
validity issues and future work in Section 5.

2. BACKGROUND AND DESCRIPTIONS
We are interested in real-world software systems deployed

today that are of key business interest to users, such that there
are users who pay for maintenance contracts and who may be
willing to pay to insure against defect occurrences.

2.1 Defect occurrence
We define a defect occurrence as a user-reported problem

that requires developer intervention to correct. This is the
observable event of interest for both maintenance and insurance
purposes.

The operational definition of a defect occurrence varies
across organizations. In this paper, we use the same approach to
analyze defect occurrences in different organizations and show
that our approach is resilient to organizational differences. The
commercial software development organizations measure faults
and failures, described in Section 2.2.1, while open source
software projects track user-submitted bug-reports, described in
Section 2.2.2. Our findings support the idea that a common
defect-occurrence projection method for WPSSs can be used
across many organizations and development styles.

We are interested the defect-occurrence pattern, which is
the rate of defect occurrence as a function of time over the
lifetime of a release. We define the lifetime of a release as the
duration of time between when a release becomes generally
available and when there are no defect occurrences reported to
the software development organization for three consecutive
time intervals. Determining the lifetime of a release is discussed
in detail in [15, Appendix C].

Our focus on the defect occurrence pattern is different from
previous research on the total number of defects [5] and the
normalized defect-occurrence rate. The normalized defect-
occurrence rate is the rate of defect occurrences normalized with
respect to the number of deployed systems and the usage amount
over the lifetime of a release [4][18][19][20][29]. Knowing only
the total number of defects is inadequate because resource
allocation for maintenance planning and cash reserve
management for insurance both require knowledge of how many
defects are going to occur in a given time period. The
normalized defect-occurrence rate is unsuitable because it
requires accurate measurements of deployment and usage
patterns. As we explain in the next section, unknown
deployment and usage patterns are properties of WPSSs.

2.2 Widely-deployed production software
systems

We are interested in widely-deployed, production, software
systems (WPSSs), which are software systems with the
following properties:
• The software system is used in many software and

hardware configurations (some unforeseen).
• The deployment and usage patterns of the software system

are unknown.
• The development process of software system has

constraints (such as scheduling and resource constraints).
• The contents of the software system change over time.
• The software system has multiple releases.

2.2.1 Commercial software systems
Nearly all COTS software systems have the properties of

WPSSs. COTS software systems are not developed with one
client in mind but rather to be sold on the open market and to be
used by many clients [2]. The systems are typically built to run
on multiple hardware platforms, to be compatible with many
different hardware devices, and to be compatible with many
other software systems. Constraints exist on the development
process, such as pre-set release dates and limited resources. The
software development organization has limited information on
who is going to purchase the software system and puts out
successive versions of the software system, which implements
new functionality and improvements [12].

The two COTS software systems we examine are developed
by two different divisions of IBM. The operating system is a
mature product with many years of presence in the marketplace.
The commercial middleware system has a few years of
deployment history and a growing customer base.

The defect-occurrence data collected are code-related
problems discovered and reported by customers after
deployment. A more detailed description of the data collection
process is in [15, Appendix E]. The defect-occurrence data for
the operating system contain unique field defects that led to
code changes by the product support organization. The defect-
occurrence data for the middleware system contain all field
defects (which may not be unique) that lead to code changes.
The defect-occurrence data are processed and aggregated, so for
each data set we use the interval in that data set. The time
interval for the middleware system is a month and the time
interval for the operating system is a quarter.

2.2.2 Open source software systems
Open source software systems have all the properties of

WPSSs. A consortium of user-developers with different needs
(generally with one person or a core group leading development)
develops an open source software system. A successful project
has diverse user-developers that develop and test the software
system, port the software system to many platforms, make it
operable with many devices, and make it compatible with other
software systems. Hence, the number of active user-developers
constrains an open source project. The software system can be
downloaded and used anonymously, so there is limited
knowledge about the users. Open source software systems
usually evolve in successive releases to satisfy the needs of its
user-developers [25].

The open source software systems we examine are
developed by successful open source projects with many user-

264

developers from around the world. The open source operating
system is OpenBSD. OpenBSD is a Unix-like operating system
that emphasizes portability, standardization, correctness,
proactive security, and integrated cryptography [21]. The open
source middleware system is Tomcat, which is one of the
products developed by the Jakarta Project. Tomcat is the servlet
container used in the official reference implementation for the
Java Servlet and JavaServer Pages technologies [7].

The defect-occurrence data collected are bug reports
submitted by users via the web based bug-tracking system. A
more detailed description of the data collection process is in [15,
Appendix E]. Unlike users of a commercial software system,
user-developers of an open source software system can obtain
the software system anytime during development and submit
bug reports. Many bugs are duplicates, user mistakes, or
otherwise invalid submissions that do not require code changes.
However, we include all user-reported bug reports in our data
set because a member of the core development team examines
each bug submission and decides upon a course of action. The
time interval used for both open source software systems is a
month.

2.2.3 Related work
Much of the prior research in software reliability has been

conducted on systems where the testing environment and the
deployment environment are similar. Similarities like software
and hardware configurations and usage patterns have allowed
researchers to extend defect-occurrence patterns from
development into the field. Lyu in [16] provides a
comprehensive review of previous works. Lyu explains model
origins, states modeling assumptions, and classifies commonly
used reliability models. We borrow mathematical models and
statistical tools from prior research, however extending defect-
occurrence patterns is inappropriate for WPSSs given properties
discussed in Section 2.2.

Current efforts to certify software are very similar to prior
research in software reliability engineering. Voas advocates
certifying commercial software for use in a customer’s
environment [28], and Wallnau et. al. at the Software
Engineering Institute are conducting research on predictable
assembly from certified components [14]. Both approaches test
software in the customer’s environment then extend results into
usage. These approaches account for several environmental
variables and make statistical guarantees about various
properties. However, we feel that cost, variance, and unforeseen
confounds at the single-customer level might make such
methods impractical. We do however, leverage relationships
between characteristics of software systems and defect
occurrences discovered in their research.

Several on-going research efforts examine defect
occurrences across multiple releases. Ostrand and Weyuker use
software content and development process measures to predict
faulty files in multiple releases of two software systems at
AT&T [22]. Their model predicts the top 20% faultiest files,
which they show to capture around 80% of faults found during
development and in the field. The COQUALMO project at USC
uses COCOMO II data to estimate the total number of defects in
a software system [5]. Their model uses size metrics and various
process modifiers. The process modifiers measure aspects of the
defect injection process and the defect removal process. Jones
et. al at Nortel use the percentage of deployed systems with a

module installed as a surrogate for usage along with software
content measures to predict the likelihood that a module will be
faulty in the field [10]. They correctly identify approximately
70% of the faulty modules while misidentifying less than 26%
of the faulty modules. These research projects contribute
knowledge about the important predictors of defect occurrences.
However, none of the projects examines the defect-occurrence
pattern. As noted in Section 2.1, risk mitigation techniques need
to know both the expected total number of defect occurrences as
well as when those defect occurrences happen in the lifetime of
a release.

Mockus et. al. use software content and development
process information captured in the change management and
CVS systems to predict the amount of repair effort and the delay
until the effort is needed for eleven releases of a
telecommunications software system at Avaya [17]. They
assume that field repair effort is proportional to development
effort and estimate a delay factor and an effort multiplier. Our
work is similar. However, our focus is on defect-occurrence
patterns, while the focus at Avaya is on effort.

Popstajanova et. al in [23] uses architecture, utilization,
and control flow information to predict the likelihood of defect
occurrences. Unlike their white box approach, our approach is
black box.

Previous works have also compared defect-occurrence
models. Jones compares various models and the MLE and least
squares model fitting methods for ten releases of a
telecommunications software system at Northern Telecom and
Bell Canada [9]. He concludes that the Logarithmic model,
fitted using the least squares method, produces the best results
and that the least squares method is superior to the MLE method
overall. Jones considers a Weibull process model. Wood
compares eight mathematical models fitted using the least
squares method for four releases of a software system at Tandem
computers [29]. Wood considers the Weibull model but finds
that the Exponential is the best model in his environment. Their
works lack an underlying theory explaining why a model is
superior in their environment, and they do not replicate their
experiment at other organizations. We develop a theory for the
causes of variation in defect-occurrence patterns for WPSSs and
compare models across multiple releases, multiple
organizations, and multiple products.

There appears to be no published work on projecting
defect-occurrence patterns for open source projects. We note
that software systems are becoming so complex and expensive
that few organizations have the resources to build custom
systems. More and more organizations reply on COTS or open
source software systems, which is the focus of this paper.

2.3 Character istics of WPSSs
Content, development process, deployment and usage

patterns, and software and hardware configurations in use are
characteristics of WPSSs that tend to change, sometimes
dramatically, between releases. The effect of changes on defect-
occurrence patterns will dictate which defect-occurrence model
is best suited to model defect-occurrence patterns in multiple
releases and which parameter-extrapolation methods are
effective. We use results from previous work in software
reliability engineering and intuitive arguments to provide
evidence that the characteristics listed above can influence
defect-occurrence patterns across multiple releases.

265

2.3.1 Content
Software content affects defect-occurrence patterns across

multiple releases [11][17]. Successive releases incrementally
add features and implement internal changes, such as
refactoring. Some modifications may be more difficult and
defect prone than others, which may cause more defect
occurrences over a longer time period. Depending on the
similarity of content changes, the defect-occurrence pattern of a
release may be similar to one release but be substantially
different from another.

2.3.2 Development process
The development process affects defect-occurrence patterns

across multiple releases [12][7]. Although the development
process of most organizations changes slowly over time, when
combined with other factors the development process may have
significant impact on defect-occurrence patterns. Insufficient
and varying testing resources and schedule pressure may lead to
ineffective defect removal. This can cause defects to linger in
the system and can cause blocking, which occurs when one
defect masks the presence of other defects. However, problems
with the development process may not be present to the same
degree in every release, which may cause defect-occurrence
patterns to vary.

2.3.3 Deployment and usage patterns
Deployment and usage patterns affect defect-occurrence

patterns across multiple releases [3][16]. The total number of
deployed systems and the pattern of deployment dictate how
much usage and how many usage patterns are possible.
Deployment may be different for each release because users
cannot be forced to adopt the latest release. Some users may
adopt every release, while others may only adopt releases that
contain important functionality. In addition, some users may
adopt a release immediately, while other may delay adoption.
The usage patterns may also be different from release to release
and from user to user. Some users may not heavily exercise the
software until the software has shown to be satisfactory under
normal operating conditions. Deployment and usage patterns
dictate how heavily the system is exercised, which may cause
variations in defect-occurrence patterns.

2.3.4 Software and hardware configurations in use
Software and hardware configurations in use affect defect-

occurrence patterns across multiple releases [14][28]. The
software development organization has limited knowledge about
users, and thus may not be able to test all possible hardware and
software configurations. Furthermore, comprehensive testing
may not be feasible given economic and scheduling constraints.
Therefore, the software may have defects that are specific to
certain configurations, software interactions, and other special
conditions, such as malicious attacks.

3. DEFECT-OCCURRENCE MODELS
A single type of defect-occurrence model may be able to

model defect-occurrence patterns across multiple releases of a
wide variety of WPSSs. We believe such a model exists despite
possible changes in characteristics discussed in Section 2.3
because of similarities between releases and properties common
to all WPSSs. Bassin and Santhanam at IBM have shown that
successive releases have similarities in the functionalities
implemented, the development organization, and users with
similar usage patterns [1]. All WPSSs also share common
properties mentioned in Section 2.2.

In order for a model to be widely applicable, it needs to
have parameterization that can account for variations in defect-
occurrence patterns. In this section, we develop and use real-
world data to empirically test the hypothesis that the Weibull
model is better than other candidate models in modeling defect-
occurrence patterns for multiple releases of WPSSs.

3.1 Candidate models
We are interested in the defect-occurrence pattern.

Therefore, we are interested in models that model the number of
defect occurrences in each time period over the lifetime of a
release. We consider the Exponential model, the Gamma model,
the Logarithmic model, the Power model, and the Weibull
model. These models are promising because prior research in
software reliability engineering has shown each model to be
effective at modeling defect-occurrence patterns at a software
development organization [9][16][29]. Each model is
parametric. The number of defect occurrences during the t-th
time interval is determined by the model parameterization and
the current time interval. The number of defect occurrences
within a time interval is modeled as a non-homogenous Poisson
process with a stationary defect rate

�
(t). Table 1 lists the

models. Lyu [16] provides details about the models, including
researchers who have developed and applied the models in
practice.

3.2 The Weibull model
The Weibull model can account for different increasing and

decreasing trends, which reflect initial increases and eventual
decreases in defect occurrences. We generally expect early
defect occurrences to show a primarily increasing trend as users
migrate to the release, exercise the software, and report defects,
and we expect later defect occurrences to show a primarily
decreasing trend as the rate of adoption declines and the release
becomes more reliable due to defect removal.

The Weibull model has three parameters N, � , and � .
Intuitively, the Weibull model can be broken down into three
interacting pieces: N, representing the total number of defect

Table 1. Candidate models

Model type Model name Model form Researchers/users of the model

Exponential Non-homogenous Poisson process model � (t) = N � e
– � t Goel & Okumoto

Weibull Weibull � (t) = N � � t
� -1

 e
– � t �

 Schick-Wolverton

Gamma S-shaped reliability growth model � (t) = N � �
 t

� -1
 e

– � t
 Yamada, Ohba & Osaki

Power Duane Model � (t) = � � e
– � t

 Duane

Logarithmic Musa-Okumoto logarithmic Poisson model � (t) = � (� � t +1)
– 1

 Musa-Okumoto

266

occurrences in the lifetime of the release, a generally increasing
component � � t

� -1
 , which dominates early, and a decreasing

component e
– � t �

 , which dominates as time increases.
N can be different for each release, which can account for

differences in the total number of defect occurrences between
releases. The differences may be caused by changes in software
content or development processes.

In general, � � t
� -1

 increases as a function of time and can
account for increases in defect occurrences. The rate of growth is
controlled by a combination of the � and � parameters. The
increasing component is flexible enough to describe both concave
and convex increasing patterns. Concave increasing patterns can
occur when the growth in the rate of defect occurrences is faster at
the beginning of the release, which may occur if many users
quickly adopt and use a release. Convex increasing patterns can
occur when the rate of defect occurrences increase slowly. This
may occur if users slowly migrate to the release or if constraints
on development and problematic content cause blocking, which
prevents defects from being discovered.

The term e
– � t �

 decreases as a function of time and can
account for decreases in defect occurrences. Again, the rate of
decrease is controlled by a combination of the � and � parameters.
The decreasing component can describe concave or convex
decreasing patterns. Convex decreasing patterns can occur when
the rate of defect occurrences decrease rapidly, which may occur
if there is fast migration to a new release. Concave patterns can
occur when the rate of defect occurrences decrease slowly, which
may occur if defect occurrences remain high over a longer time
period due to constraints on development or problematic content.

It is reasonable to expect a model with parameterization that
can describe varying defect-occurrence patterns such as the
Weibull model to be better than other candidate models. The
Exponential, the Power, and the Logarithmic models do not have
both decreasing and increasing components. They cannot describe
the interplay of increasing and decreasing trends. Although the
Gamma model has both increasing and decreasing components, its
decreasing component is generally convex. Thus, the Gamma
model is unable to describe situations in which the decreasing
pattern is concave. Kenny [11] has studied the interaction of
increasing and decreasing trends in defect-occurrence patterns in
commercial software systems and recommends using the Weibull
model to model defect-occurrence patterns.

We hypothesize that the Weibull model is better than other
candidate models at modeling defect-occurrence patterns for
multiple releases of WPSSs.

3.3 Model fitting and model selection
We fit the best set of parameters for each candidate model for

each release using Non-linear Least Squares (NLS) regression
then compare the candidate models using the Akaike Information
Criterion (AIC) model selection criterion [27].

NLS is a well-established model fitting procedure that selects
model parameters by minimizing the square of the difference
between fitted values and actual values [27]. It is widely used in
defect modeling research [9][29]. We use the open source
statistical computing package R [24]. After we select the best
parameters for each candidate model for a given release, we use
the AIC model selection criterion to evaluate the fit of the
different candidate models; lower AIC scores are better. The AIC
score is defined as:

AIC = n log �
2 + 2 |S|

where � 2 is the residual squared error divided by the difference of
the number of observations, n, and the number of model
parameters, S [27]. The AIC model selection criterion penalizes
models with more parameters to offset the advantage models with
more parameters have in comparisons.

Our hypothesis stated in Section 3.2 would be supported if
the Weibull model consistently produces lower AIC score.

Tables 2-5 present the AIC scores. The best AIC scores for
each release are highlighted (shaded cells highlight the best AIC
scores among fitted candidate models). INF and Singular Gradient
indicate that the model-fitting algorithm is unable to fit
parameters for the model, which suggests that the model is
inappropriate. A detailed explanation of the failure to fit model
parameters and why it suggests a model is inappropriate is given
in [15, Appendix B].

Table 2. AIC scores for commercial OS

Release/
Model

Exponential
Model

Weibull
Model

Gamma
Model

Power
Model

Logarithmic
Model

i 158 131 144 164 160

i + 1 119 110 111 131 126

i + 2 159 150 155 175 169

i + 3 104 105 111 113 109

i + 4 116 111 109 121 118

i + 5 104 87 89 105 104

i + 6 62 64 64 62 62

i + 7
Singular
Gradient

63 63 66
Singular
Gradient

 Table 3. AIC scores for commercial middleware system

Release/
Model

Exponential
Model

Weibull
Model

Gamma
Model

Power
Model

Logarithmic
Model

i 153 134 134 163 157

i + 1
Singular
Gradient

173 171 195
Singular
Gradient

i + 2
Singular
Gradient

116 116 129
Singular
Gradient

Table 4. AIC scores for open source OS

Release
\Model

Exponential
Model

Weibull
Model

Gamma
Model

Power
Model

Logarithmic
Model

2.6 167 124 129 173 170

2.7 162 91 103 176 171

2.8 182 134 136 188 185

2.9 135 97 88 143 139

3.0 110 83 90 113 112

3.1 170 168 166 173 171

3.2 88 84 85 101 99

3.3 91 73 76 93 91

Table 5. AIC scores for open source middleware system

Release
/Model

Exponential
Model

Weibull
Model

Gamma
Model

Power
Model

Logarithmic
Model

3.3 INF 157 157 193 192

4.0 INF 215 219 275 275

4.1 INF 77 78 92 93

267

Figure 1 shows fitted candidate models for a representative
sample of releases from each of the four WPSSs. Due to
confidentiality agreements, only the figures for open source
software systems have numbered axes. Plots of all fitted candidate
models are in [15, Appendix A].

Tables 2-5 show that the Weibull model has the best AIC
score or one of the best AIC scores in 16 out of 22 or 73% of the
releases. This is considerably better than the next best model,
which is the Gamma model with the best AIC score or one of the
best AIC scores in 8 out of 22 or 36% of the releases.
Furthermore, since the AIC is a measure of deviance, it roughly
follows a � 2 (chi-squared) distribution, which makes 4 a rough
95% confidence band around an AIC score. We note that the
Weibull is within the 95% confidence band of the best AIC score
in all but one of the releases. These results support our hypothesis
that the Weibull model is the preferred model.

3.4 Validation of the Weibull model
We have shown that the Weibull is better than other

candidate models. However, we still need to show that the
Weibull model adequately describes the defect-occurrence

pattern. We use the Theil forecasting statistic to validate the
Weibull model.

The Theil statistic compares the forecast for each time
interval i against a no-change forecast based on the previous time
interval's value [26].

The Theil statistic U is greater or equal to zero. The term Pi

is the projected change and Ai is the actual change in interval i. A
Theil statistic of zero indicates perfect forecasts with Pi = Ai. A
Theil statistic of one indicates that forecasts are no better than no-
change forecasts with Pi = 0. Values greater than one indicate
forecasts are worse than no-change forecasts.

The Theil statistics shown in Figure 2 indicate that the best-
fit Weibull is always better than the no-change forecast.

We conclude that the Weibull model is the preferred model
because the Weibull model is better than other candidate models
based on AIC scores in Section 3.3 and is good at projecting
defect occurrences based on Theil statistics. Further validation is
in [15, Appendix F].

Figure 1. Samples of fitted candidate models

U 2=

�
 (Pi – Ai)

2

�
 Ai

2

268

Figure 2. Plots of best-fit Weibull models

269

4. NAÏVE MODEL PARAMETER
EXTRAPOLATION METHODS

Section 3.4 establishes the Weibull model as the preferred
model. However, in order to project defect occurrences we still
need to extrapolate model parameters for each new release. Naïve
parameter-extrapolation methods that do not consider the changes
in characteristics described in section 2.3 may extrapolate
parameters that result in poor forecasts. In this section, we
develop and empirically test the hypothesis that the moving
averages and exponential smoothing methods are inadequate.

4.1 The moving averages method and the
exponential smoothing method

Both the moving averages and exponential methods are well-
established time series methods that represent intuitive,
reasonable, and fairly common methods for extrapolating model
parameters. The moving averages method extrapolates parameters
by taking the average of the best-fit model parameters from the
previous k releases. Exponential smoothing is similar, except
more recent releases are given more weight, since intuitively more
recent releases should be better predictors of the current release.
Eick et. al. [6] have used a similar method to predict software
defect rates for various software modules.

4.2 Inadequacies of naïve methods
Naïve parameter-extrapolation methods may not account for

variations in defect-occurrence patterns because the methods do
not consider changes in content, development process,
deployment and usage patterns, and software and hardware
configurations in use between releases. For example, consider a
major release and a minor release. A major release that
implements new functionality can have significant changes in
content, production, and usage. New functionality can lead to
substantial code changes and additions. If the schedule is fixed or
if there is an insufficient number of trained testers then
development constraints may cause inadequate testing. Finally,
there may be many more adopters if the functionality being
implemented is important to the users. A minor release that offers
only minimal improvements over a previous release would have
none of the above-mentioned conditions. We expect defect-
occurrence patterns in the two releases to be drastically different.
However, naïve parameter-extrapolation methods do not account
for the differences.

We hypothesize that the two naïve parameter-extrapolation
methods extrapolate model parameters that produce inadequate
defect-occurrence projections for multiple releases of WPSSs.

4.3 Model parameter extrapolation and
forecast evaluation

We evaluate naïve parameter-extrapolation methods by
extrapolating model parameters and then examining the Theil
forecasting statistics of the projected defect occurrences. Our
hypothesis in section 4.2 will be supported if the two naïve
parameter-extrapolation methods fail to consistently produce
Theil statistics that are less than one and if the Theil statistics do
not consistently improve with more data.

We increase the validity of our results by making the
simplifying assumption that the total number of defect
occurrences is known. Prior research has already shown that two

different software releases are likely to have different total
numbers of defect occurrences [5][17]. We remove the possible
confound by providing estimates of the total number of defects.
We show that naïve parameter-extrapolation methods are
inadequate even with this simplification. This topic is discussed in
detail in [15, Appendix D].

Tables 6-9 present fitted � and � parameters and Figure 2
presents plots of the best-fit Weibull models. We theorize that
changes in characteristics described in Section 2.3 cause the
variation in the parameter values.

Table 10 and 11 present Theil statistics resulting from using
the moving averages and exponential smoothing methods to select
the � and � model parameters of the Weibull model. The total
number of defects is assumed to be given and is approximated by
the total number of defects generated by the best-fit Weibull
model.

We evaluate the benefits of including more historical
information for naïve parameter-extrapolation methods by
comparing the Theil statistics produced using multiple releases
against the Theil statistics produced using model parameters of
the most recent release as the model parameters for a new release.
Improvements are possible since Theil statistics in tables 10 and
11 indicate that in 9 out of 18 or 50% of the forecasting
experiments, using model parameters from the most recent release
result in projections that are no better than no-change forecasts.
(The exponential smoothing and moving averages methods are
identical when extrapolating parameters using only data from the
most recent release, thus their results are the same.) However,
results show that projections do not improve if we incorporate
additional historical information. There are 88 total forecasting
experiments for the two naïve parameter-extrapolation methods
using data from two or more releases. In 44 out of 88 or 50% of
the forecasting experiments, Theil statistics show no improvement
over values from column one release (shaded cells in tables 10
and 11 highlight values showing no improvement). Incorporating
additional historical information failed to improve Theil statistics.

Table 6. Model parameters for commercial OS

Param
/Rel

i i+1 i+2 i+3 i+4 i+5 i+6 i+7

� 2.58 1.56 1.38 1.11 1.57 1.90 0.89 2.12
�

 9.00 7.07 6.91 6.45 7.37 8.63 131.37 10.97

Table 7. Model parameters for commercial middleware system

Parameter
/Release

i i+1 i+2

� 1.72 2.05 2.81
�

 10.58 17.75 14.97

Table 8. Model parameters for open source OS

Param
/Rel

2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3

� 2.70 2.22 2.79 2.28 2.51 1.86 1.37 2.40
�

 6.69 5.33 6.83 4.66 5.69 5.45 3.65 5.99

Table 9. Model parameters for open source middleware system

Parameter
/Release

3.3 4.0 4.1

� 4.19 3.84 2.21
�

 15.44 16.89 8.39

270

Table 10. Theil forecasting statistics for projections with the
moving averages method

Releases/
System

one
release

two
releases

three
releases

four
releases

five
releases

six
releases

seven
releases

Commercial
MW R i+1 2.26

Commercial
MW R i+2 1.00 1.11

Open source
MW R4.0 0.94

Open source
MW R4.1 2.07 2.07

Commercial
OS R i+1 0.98

Commercial
OS R i+2 0.50 0.88

Commercial
OS R i+3 0.56 0.61 0.86

Commercial
OS R i+4 0.74 0.66 0.61 0.56

Commercial
OS R i+5 0.94 1.30 1.29 1.22 0.89

Commercial
OS R i+6 7.33 7.44 7.43 7.46 7.52 7.63

Commercial
OS R i+7 3.67 3.76 3.54 3.21 2.98 2.79 2.74

Open source
OS R2.7 1.13

Open source
OS R2.8 1.06 0.70

Open source
OS R2.9 1.32 0.93 1.04

Open source
OS R3.0 0.87 0.42 0.43 0.44

Open source
OS R3.1 0.72 0.70 0.73 0.71 0.73

Open source
OS R3.2 0.76 0.91 0.87 0.99 0.97 1.02

Open source
OS R3.3 1.56 1.10 0.85 0.86 0.66 0.66 0.57

Table 11. Theil forecasting statistics for projections with the
exponential smoothing method

Releases/
System

one
release

two
releases

three
releases

four
releases

five
releases

six
releases

seven
releases

Commercial
MW R i+1 2.26

Commercial
MW R i+2 1.00 1.05

Open source
MW R4.0 0.94

Open source
MW R4.1 2.07 2.07

Commercial
OS R i+1 0.98

Commercial
OS R i+2 0.50 0.81

Commercial
OS R i+3 0.56 0.60 0.77

Commercial
OS R i+4 0.74 0.67 0.63 0.57

Commercial
OS R i+5 0.94 1.24 1.24 1.21 1.06

Commercial
OS R i+6 7.33 7.42 7.41 7.43 7.46 7.50

Commercial
OS R i+7 3.67 3.77 3.68 3.56 3.50 3.47 3.48

Open source
OS R2.7 1.13

Open source
OS R2.8 1.06 0.76

Open source
OS R2.9 1.32 1.00 1.06

Open source
OS R3.0 0.87 0.43 0.44 0.42

Open source
OS R3.1 0.72 0.70 0.72 0.71 0.72

Open source
OS R3.2 0.76 0.88 0.86 0.93 0.93 0.95

Open source
OS R3.3 1.56 1.18 0.99 0.98 0.87 0.86 0.82

Not only do naïve parameter-extrapolation methods fail to
improve projections with additional data, they produce poor
projections overall. Theil statistics are greater than or equal to one
in 39 out of 88 or 44% of the forecasting experiments. Moving
averages produced poor projections in 43% of the forecasting
experiments. Exponential smoothing produced poor projections in
45% of the forecasting experiments. Similar results are produced
when we use the naïve parameter-extrapolation methods to
extrapolated model parameters for the Gamma model. The details
are in [15, Appendix F].

We conclude that there is strong empirical evidence that the
Weibull model is the preferred model for modeling defect-
occurrence patterns of WPSSs across multiple releases and that
the naïve parameter-extrapolation methods, moving averages and
exponential smoothing, are inadequate in extrapolating model
parameters of the Weibull model for defect-occurrence projection.

5. VALIDATION AND FUTURE WORK
Our research aims to deal with the real world consequences

of defect occurrences in WPSSs. Maintenance planning and
software insurance are two methods that can deal with the
consequences [13], and both need accurate defect-occurrence
projections. This paper set out to address two questions that are
important for defect-occurrence projection: is there a type of
defect model that provides a good fit to defect-occurrence patterns
across multiple releases and in many organizations, and how can
model parameters for a new release be extrapolated using
historical information.

We have examined historically effective defect-occurrence
models. There is extensive defect-occurrence modeling research
history to support our belief that our collection of models is well-
suited for modeling software defect-occurrence patterns. Despite
these efforts, it is possible that a better defect model exists, and
we strongly encourage others to replicate our approach using a
wider array of models.

The difference in definition of defect occurrences and the
time interval used between the software systems strengthens our
finding that the Weibull model is the preferred model, since
despite the differences in definition, the Weibull model still
proved superior. There may be other meaningful ways of
counting defects where the Weibull model does not perform as
well. Only future research can address this issue.

We have attempted to establish the external validity by
including two different types of software systems (middleware and

271

operating systems) developed with two different development
styles (commercial and open source). It is not yet clear how
adequately this sample represents the population of WPSSs. We
regard this as a promising start, but future research should sample
additional parts of the WPSS space.

The goal of our research is to develop a defect-occurrence
projection method that produces defect-occurrence projections
that are better than post-facto fits. Our results show that naïve
parameter-extrapolation methods are never better than the post-
facto, best-fit, Weibull model (Theil statistics in Figure 2 and
Tables 10 and 11). However, a post-facto fit chooses model
parameters that minimize the residual error for all data points
simultaneously, which does not necessarily produce the best
model parameters for each data point. It may be possible to
produce better projections than the post-facto fit by updating a-
priori projections as more information becomes available, such as
after the arrival of field defect-occurrence data or after the release
of software patches.

Our results in this paper indicate that the Weibull model is
the preferred model for modeling defect-occurrence patterns for
multiple releases of WPSSs and that the naïve parameter-
extrapolation methods are inadequate. We have claimed that we
expected the naïve parameter-extrapolation methods to fail
because they do not account for differences in content,
development process, deployment and usage patterns, and
software and hardware configurations in use. The next step should
be to improve parameter-extrapolation methods by predicting the
effects on model parameters resulting from changes in
characteristics of widely-deployed, production, software systems.

6. ACKNOWLEDGEMENTS
This research was supported by the National Science

Foundation under Grand CCR-0086003, by the Sloan Software
Industry Center at Carnegie Mellon University, and by the NASA
High Dependability Computing Program under cooperative
agreement NCC-2-1298. Thanks to IBM for making this work
possible, Larry Wasserman for his guidance, and Audris Mockus
for his insights.

7. REFERENCES
[1] K. Bassin and P. Santhanam. Use of software triggers to
evaluate software process effectiveness and capture customer
usage profiles. In Eighth International Symposium on Software
Reliability Engineering, Case Studies, p103-114, 1997.
[2] B. Boehm and et. al. Cost models for future software life
cycle processes: COCOMO 2.0. In Annals of Software
Engineering Special Volume on Software Process and Product
Measurement, Chapter 1,1995.
[3] M. Buckley and R. Chillarege. Discovering relationships
between service and customer satisfaction. In The International
Conference on Software Maintenance, p192-200 1995.
[4] R. Chillarege, S. Biyani, and J. Rosenthal. Measurement of
failure rate in widely distributed software. In Twenty-Fifth
International Symposium on Fault-Tolerant Computing, p424-
433, 1995.
[5] S. Chulani. COQUALMO (constructive quality model) a
software defect density prediction model. In Project Control for
Software Quality, 1999.
[6] S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A.
Mockus. Does code decay? assessing the evidence from change

management data. In IEEE Transactions on Software
Engineering, Volume 27, p1-12, 2001.
[7] D.E. Harter, M.S. Krishnan, S.A. Slaughter. Effects of
process maturity on quality, cycle time, and effort in software
product development. Management Science, Volume 46, p451-
466, 2000.
[8] Jakarta Tomcat. http://jakarta.apache.org/tomcat/index.html
[9] W. Jones. Reliability models for very large software systems
in industry. In International Symposium Software Reliability
Engineering, p17-18, 1991.
[10] W. Jones, J. Hudepohl, T. M. Khoshgoftaar, and E. B. Allen.
Application of a usage profile in software quality models. In Third
European Conference on Software Maintenance and
Reengineering, p148-157, 1999.
[11] G. Kenny. Estimating defects in commercial software during
operational use. In IEEE Transactions on Reliability, Volume 42,
p107-115, 1993.
[12] M. Lehman and L. Belady. Program Evolution: Processes of
Software Change. Academic Press, USA, 1985.
[13] P. Li, M. Shaw, and J. Herbsleb. Selecting a defect
prediction model for maintenance resource planning and software
insurance. In EDSER-5 affiliated with ICSE, p32-37, 2003.
[14] P. Li, M. Shaw, K. Stolarick, and K. Wallnau. The potential
for synergy between certification and insurance. In International
Workshop on Reuse Economics in conjunction with ICSR, 2002.
[15] P.Li, M.Shaw, J.Herbsleb, B. Ray, and P.Santhanam.
Empirical evaluation of defect projection models for widely-
deployed production software systems. In CMU tech report CMU-
ISRI-04-130, 2004
[16] M. R. Lyu. Handbook of Software Reliability Engineering.
IEEE Society Press, USA, 1996.
[17] A. Mockus, D. Weiss, and P. Zhang. Understanding and
predicting effort in software projects. In ICSE, p274-284, 2003.
[18] P. Mora and Z. Jelinski. Final report on software reliability
study. In McDonell Douglas Astronautic Company Report
Number 63921, 1972.
[19] J. Musa. A theory of software reliability and its applications.
In IEEE Transaction on Software Engineering, Volume 3, p312-
327, 1975.
[20] J. Musa. Operational profiles in software reliability
engineering. In IEEE Software, Volume 10, p14-32, 1993.
[21] OpenBSD. http://www.openbsd.org
[22] T. Ostrand and E. Weyuker. The distribution of faults in a
large industrial software system. In ISSTA, p55-64, 2002
[23] K.Popstajanova and K. Trivedi. Architecture based approach
to reliability assessment of software systems. Performance
Evaluation, Volume 45, 2001.
[24] R project for statistical computing. http://www.r-project.org
[25] E. Raymond. Cathedral and the Bazaar. O'Reily &
Associates, USA, 1999.
[26] H. Theil. Applied Economic Forecasting. North-Holland
Publishing Company, Netherlands, 1966.
[27] W. Venables and B. Ripley. Modern Applied Statistics with
S-plus. Springer Verlag, USA, 1996.
[28] J. Voas. User participation-based software certification. In
Eurovav, p267-276, 1999.
[29] A. Wood. Predicting software reliability. In IEEE Computer,
Volume 9, p69-77, 1999.

272

