
Forecasting Field Defect Rates Using a Combined  
Time-based and Metrics-based Approach:  

a Case Study of OpenBSD 
Paul Luo Li   Jim Herbsleb  Mary Shaw 

 Institute for Software Research, International,  
School of Computer Science,  
Carnegie Mellon University  

Pittsburgh PA, 15213 
1-412-268-3043 

{paul.li, jdh, mary.shaw} @cs.cmu.edu 
ABSTRACT 

Open source software systems are critical infrastructure for 

many applications; however, little has been precisely 

measured about their quality. Forecasting the field defect-

occurrence rate over the entire lifespan of a release before 

deployment for open source software systems may enable 

informed decision-making. In this paper, we present an 

empirical case study of ten releases of OpenBSD. We use 

the novel approach of predicting model parameters of 

software reliability growth models (SRGMs) using metrics-

based modeling methods. We consider three SRGMs, seven 

metrics-based prediction methods, and two different sets of 

predictors. Our results show that accurate field defect-

occurrence rate forecasts are possible for OpenBSD, as 

measured by the Theil forecasting statistic. We identify the 

SRGM that produces the most accurate forecasts and 

subjectively determine the preferred metrics-based 

prediction method and set of predictors. Our findings are 

steps towards managing the risks associated with field 

defects. 

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program 

Verification – Reliability, Statistical methods 

D.2.8 [Software Engineering]: Metrics – Process metrics, 

Product metrics, Software science 

D.2.9 [Software Engineering]: Management – Cost 

estimation, Software quality assurance

General Terms
Management, Measurement, Reliability, Experimentation 

Keywords
Metrics-based modeling, deployment and usage metrics, 

software and hardware configurations metrics, comparative 

study, open source software 

1. INTRODUCTION  
Many software applications, including mobile applications, 

depend upon open source software systems to provide 

critical computing infrastructure. The quality of the 

infrastructure (e.g. operating system) may affect the quality 

of the application. In this paper, we present a case study of 

the open source operating system OpenBSD, which is a key 

component of several commercial network security 

products [30]. 

Quantitatively-based decision making regarding open 

source systems is often difficult, because the quality of 

open source software systems is often not known 

quantitatively. Being able to forecast field defect-

occurrence rates (i.e. the rates of customer reported 

software problems requiring developer intervention to 

resolve) over the entire lifespan of a release (i.e. as long as 

there are field defect occurrences) before deployment (i.e. 

at the time of release) may allow existing quantitatively-

based decision-making methods to be used to: 

• Help organizations seeking to adopt open source 

software systems to make informed choices between 

candidates 

• Help organizations using open source software systems 

to decide whether to adopt the latest release 

• Help organizations that adopt a release to better manage 

resources to deal with possible defects 

• Insure users against the costs of field defect occurrences 

Prior work by Li et al. [17] has shown that it is not possible 

to forecast field defect-occurrence rates (i.e. the field 

defect-occurrence pattern over time) by fitting a SRGM to 

development defect information. In this paper, we report 

results using the novel approach of using metrics-based 

modeling methods to predict model parameters of time-

based models (i.e. SRGMs).  

We conduct empirical experiments comparing 

combinations of SRGMs, metrics-based modeling methods, 

and sets of predictors to forecast field defect-occurrence 

rates before release. We construct combinations along the 

following dimensions: 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 

made or distributed for profit or commercial advantage and that copies bear 

this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. 

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



1) Type of SRGM: Which SRGM yields the most 

accurate field defect-occurrence rate forecasts? 

a. Weibull model, described in Kenny [4] 

b. Gamma model, described in Lyu [20] 

c. Exponential model, described in Musa et al. [24] 

2) Modeling methods: Which metrics-based modeling 

method predicts model parameters that produce the 

most accurate field defect-occurrence rate forecasts?  

a. Moving averages, used in Li et al. [15] 

b. Exponential smoothing, used in Li et al. [15] 

c. Linear regression with model selection, used in 

Khoshgoftaar et al. [11] and Khoshgoftaar et al. 

[8]

d. Principal component analysis, clustering, and 

linear regression, used in Khoshgoftaar et al. [10] 

e. Trees, using used in Khoshgoftaar and Seliya [13] 

f. Non-linear regression, used in Khoshgoftaar and 

Munson [9] and Khoshgoftaar et al. [8] 

g. Neural networks, used in Khoshgoftaar et al. [12] 

and Khoshgoftaar et al. [11] 

3) Predictors: Do more predictors and more categories of 

predictors yield more accurate forecasts?  

a. The same kinds of predictors as the referenced 

work  (e.g. product metrics only) 

b. A superset of predictors that includes 145 

predictors (product metrics, development metrics, 

deployment and usage metrics, and software and 

hardware configurations metrics)  

We empirically compare the accuracy of forecasts for nine 

releases of OpenBSD. We use the Theil forecasting statistic 

to measure the accuracy of forecasts. Theil statistics lower 

than 1 are considered accurate (discussed in section 5). We 

subjectively determine the best model, modeling method, 

and set of predictors by considering the accuracy of 

predictions and the amount of information needed before a 

prediction can be made  

Our results show that the simple Exponential model 

produces more accurate forecasts (i.e. forecasts with lower 

Theil statistics) than the more complex Gamma and 

Weibull models. The trees method is the best metrics-based 

prediction method because it predicts model parameters 

that yield forecasts ranked in the top 10 in terms of 

accuracy and because the trees method is able to make 

predictions with limited data. Our results show that it is 

possible to make predictions ranked in the top 10 in terms 

of accuracy without using the superset of predictors.   

Theil statistics of our forecasts indicate that our approach 

yields accurate forecasts. Our results enable future work to 

examine the adequacy of forecasts for quantitatively-based 

decision making methods.   

We present prior work, which serves as motivation for our 

work, in section 2. We describe OpenBSD in section 3. Our 

data collection and data analysis techniques are discussed 

in sections 4 and 5. Section 6 presents our results. We 

present a discussion in section 7 and conclude in section 8.  

2. PRIOR WORK AND EXPERIMENTAL 

DESIGN  
We motivate our work and our experimental design by 

discussing prior work.  

We define a field defect as a user-reported problem 

occurring after release requiring developer intervention to 

resolve. Our operational measure of a field defect for 

OpenBSD is a user submitted problem report in the request 

tracking system of the class software bugs occurring after 

the official release date (discussed more in sections 3 and 

4). Each problem report is counted. For example, two user-

reported problems traced to the same underlying defect are 

counted as two field defects. These software related 

problem reports require developer intervention to resolve. 

A field defect occurrence is the occurrence of a field defect. 

A similar definition is used in Li et al. [15].  

2.1 Fixed dimensions in our experimental 

design
Granularity of observation, types of prediction, defect 

modeling approaches, and forecasting approaches are 

dimensions of variation we do not vary in our study. The 

dimensions listed in the introduction are dimensions we 

vary in out study and are discussed in section 2.2.  

2.1.1 Granularity of observation 
In this paper, we examine field defect occurrences for the 

entire system as a whole. This is the correct level of 

granularity because we are focused on helping software 

consumers; and, software consumers generally view the 

software system as a whole.  

Prior work has predicted field defects for individual 

software changes (e.g. in Mockus et al. [21]), files (e.g. in 

Ostrand et al. [26] ), modules (e.g. in Khoshgoftaar et al. 

[12]), and entire systems (e.g. in Kenney [4]).  

2.1.2 Types of predictions 
In this paper, we predict the rate of field defect occurrences 

over time because effective quantitatively-based decision 

making requires knowing the rate of field defect 

occurrences over time as discussed by Li et al. [15].  

Predictions regarding field defects in prior work generally 

belong to one of four categories:  

• Relationships: These studies establish relationships 

between predictors and field defects. For example, Harter 

et al. [2] establish a relationship between an 

organization’s CMM level and the number of field 

defects.  

• Classifications: These studies predict if the number of 

field defects is above a threshold for an observation. For 

example, Khoshgoftaar et al. [6] classify software 

modules as risky (will contain at least one field defect) or 

not risky (no field defects).  

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



• Quantities: These studies predict the number of field 

defects. For example, Khoshgoftaar et al. [11] predict the 

number of defects for software modules.  

• Rates of occurrences over time: These studies predict the 

field defect-occurrence rate. For example, Kenny [4] 

predicts the defect occurrence pattern as captured by the 

Weibull model for two IBM systems.  

2.1.3 Defect modeling approaches 
In this paper, we use a novel approach of using metrics-

based modeling methods to predict model parameters of a 

SRGM, which captures the field defect-occurrence pattern 

of a software release over the entire lifetime of the release 

(i.e. until there are no more field defect occurrences).  

Field defect predictions generally belong to one of two 

classes: time-based approach and metrics-based approach. 

Schneidewind [28] distinguishes between these two 

approaches: 

1. Time-based approach: This approach uses defect 

occurrence times or the number of defects in time 

intervals during testing to fit a SRGM. The field defect–

occurrence rate is forecasted using the fitted SRGM. 

Musa [20] and Lyu [24] describe this approach in detail.  

2. Metrics-based approach: This approach uses historical 

information on metrics available before release 

(predictors) and historical information on field defects to 

fit a predictive model. The fitted model and predictors’ 

values for a new observation are used to predict 

classifications or quantities; however, metrics-based 

models have not been used to predict model parameters 

of SRGMs. Examples of this approach are in Mockus 

[22] and Khoshgoftaar et al. [11] 

Li et al. [17] show that it is not possible to use the time-

based approach of fitting a SRGM to development defects 

to predict field defect-occurrence rates for OpenBSD. The 

authors find that the field defect-occurrence rates are 

generally increasing at the time of release; therefore, the 

authors cannot fit a meaningful model. Other studies (e.g. 

[16] and [4]) reach similar conclusions.  

Furthermore, in order for the defect-occurrence pattern to 

continue from testing into the field, the software has to be 

operated in a similar manner as that in which reliability 

predictions are made (as stated by Farr in [20]). However, 

we are interested in widely-used systems such as COTS 

and open source software systems. The similarity of testing 

and deployment environments assumption does not 

necessarily hold for these systems. Therefore, it may not be 

appropriate to forecast field defect-occurrence rates using a 

SRGM fitted using testing information. 

Unlike the time-based approach, the metrics-based 

approach uses historical information on predictors and 

actual field defects to construct a predictive model. Since 

there is no assumption about the similarity between testing 

and field environments, metrics-based models are more 

robust against differences between how the software is 

tested and how it is used in the field.  

2.1.4 Forecasting approaches 
In this paper, we simulate a real world situation by 

forecasting field defect-occurrence rates using only 

information available at the time of release (i.e. before 

deployment) for multiple releases. 

Prior work in metrics-based modeling either inadequately 

addresses multiple releases or does not account for multiple 

active releases. Some studies (e.g. Khoshgoftaar et al. [11]) 

split data from the same release into fitting and testing sets. 

This approach ignores possible differences between 

releases that are not accounted for in the model. A better 

approach is to use a model fitted using data from a 

historical release to predict for future releases. This is the 

approach taken by Khoshgoftaar et al. in [6]  and by 

Ostrand et al in [26]. However, previous studies assume 

that complete defect information is available for historical 

releases; yet, complete field defect information is often not 

available for historical releases that are still active in the 

field. 

In this study, we estimate model parameters for active 

historical releases using field defect information available 

at the time of release. An example prediction situation for a 

typical release is illustrated in Figure 1. 

Figure 1. Example fitting situation 

At the time of release of release 2.7, predictor information 

is available for releases 2.4-2.7 and complete field defect 

information (i.e. model parameters of the fitted model) is 

available for release 2.4. However, releases 2.5 and 2.6 are 

still active (i.e. field defects are still occurring); therefore, 

we use the estimated model parameters for the two releases. 

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



Predictor information and model parameters for releases 

2.4-2.6 are then used to predict model parameters for 

release 2.7.   

2.2 Dimensions of variation in our 

experimental design 
The SRGMs, the modeling methods, and the predictors are 

the dimensions we vary in our study. 

2.2.1 Software reliability growth models (SRGMs)  
Prior work by Li et al. [15] has compared the ability of 

SRGMs from the literature to model the rate of defect 

occurrences (including defects during development) of 

OpenBSD based on post-facto fits and has concluded that 

the Weibull model is better than other models, as judged by 

the AIC model selection criterion. We have replicated the 

experiment using only field defects and have arrived at the 

same conclusions (i.e. the Weibull model is better) [18].  

Prior work is based on post-facto fits evaluated using the 

AIC model selection criterion [15]. Even though AIC 

penalizes for extra model parameters, Weibull model 

parameters may be much harder to predict compared with 

model parameters of other models. Therefore, in this paper, 

we also consider the Gamma model (also known as the S-

shaped model [20]) and the Exponential model (also known 

as the Goel-Okumoto model [20]), which have been shown 

to be the next most effective models [18]. We have also 

examined the Logarithmic (also known as the Musa-

Okumoto model [24]) and Power (also known as Duane’s 

model [20]) models; however, their post-facto fits are 

worse than the models we consider for releases of 

OpenBSD.  

The models’ forms are in table 1. The model parameters 

(highlighted) dictate the rate of field defect occurrences. 

We predict the model parameters using metrics-based 

modeling methods. Interpretations of the models and 

discussions of the match between the SRGMs and the field 

defect-occurrence phenomenon (e.g. in Musa [24] and in 

Kenny [4]) are beyond the scope of this paper. This 

dimension of variation addresses the question: 

Which SRGM yields the most accurate field defect- 

occurrence rate forecasts?  

Table 1.  Software reliability models 

Model type Model form 

Exponential (t) = N  e 
–  t

Weibull  (t) = N  t 
-1

e
–  t 

Gamma  (t) = N t
-1

 e 
–  t

2.2.2 Metrics-based modeling methods 
Prior work has explored using metrics-based modeling 

methods to predict quantities (e.g. the total number of field 

defects). It may be possible to use these methods to predict 

model parameters that describe the field defect-occurrence 

pattern. We consider metrics-based modeling methods that 

have been used in previous studies to predict quantities. We 

discuss these methods in detail in section 5. 

Many studies have compared the accuracy of predicted 

classifications of various metrics-based models (e.g. 

Khoshgoftaar et al. [7]). Few studies have compared the 

accuracy of predicted quantities of various metrics-based 

models (e.g. Khoshgoftaar et al. [11]). No work has 

compared the accuracy of predicted field defect-occurrence 

rates of various metrics-based methods. This dimension of 

variation addresses the question:  

Which metrics-based modeling method predicts model 

parameters that produce the most accurate field defect-

occurrence rate forecasts? 

2.2.3 Predictors 
Metrics available before release are predictors, which can 

be used by metrics-based modeling methods to predict 

model parameters. 

We categorize predictors used in prior work using an 

augmented version of the categorization schemes used by 

Fenton and Pfleeger in [1] and by Khoshgoftaar and Allen 

in [5]: 

• Product metrics: metrics that measure attributes of any 

intermediate or final product of the software 

development process. Product metrics have been shown 

to be important predictors by studies such as 

Khoshgoftaar et al. [6]. 

• Development metrics: metrics that measure attributes of 

the development process. Development metrics have 

been shown to be important predictors by studies such as 

Mockus et al. [21]. 

• Deployment and usage metrics (DU): metrics that 

measure attributes of deployment of the software system 

and usage in the field. DU metrics have been shown to be 

important predictors by studies such as Jones et al. [3]. 

• Software and hardware configurations metrics (SH): 

metrics that measure attributes of the software and 

hardware systems that interact with the software system 

in the field. SH metrics have been shown to be important 

predictors by Mockus et al. [22].  

Prior work has only examined commercial software 

systems, and no prior work has examined predictions using 

predictors in all the categories simultaneously. In this 

paper, we compare using only predictors in the referenced 

work (e.g. product metrics only) and using a superset of 

predictors (i.e. predictors in all the categories). This 

dimension of variation addresses the question:  

Do more predictors and more categories of predictors 

yield more accurate forecasts? 

3. SYSTEM DESCRIPTION  
OpenBSD is an open source Unix-style operating system 

written primarily in C. The OpenBSD project uses the 

Berkley copyrights. The Berkley copyrights retain the 

rights of the copyright holder, while imposing minimal 

conditions on the use of the copyrighted material; therefore, 

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



OpenBSD has been incorporated into several commercial 

products.  

The OpenBSD project puts out a release approximately 

every six months. The release dates are published on the 

web. The OpenBSD project manages its source code using 

a CVS code repository, uses a problem tracking system, has 

multiple mailing lists.  The project dates back to 1995 and 

is described in more detail in Li et al. [17].  

We examined the project between approximately 1998 and 

2004. During that time, there were 11 releases (of which we 

examine 10, as we explain below).  

4. DATA COLLECTION  
We consider the published date of release (announced on 

the OpenBSD website) rounded to the nearest month to be 

the release date for the release. We round the release date to 

the next month (i.e. a ceiling function) due to the time it 

takes to install the system, use the system, discover a 

problem, and the report the problem. Someone reporting a 

bug right after the un-rounded release date is unlikely to be 

using the latest release. Mockus et al. use the same 

approach in [22].  

4.1 Data extraction  
We briefly discuss our data extraction process. A detailed 

description is in Li et al. [17].  

We wrote Java and perl programs to download problem 

reports from the OpenBSD website and to extract the 

number of messages in the mailing lists archives.  

There was one anomaly. Three months of field defect-

occurrence data were missing between August 2002 and 

October 2002. We verified this by examining the bugs 

mailing list archive (i.e. the mailing lists that records 

messages to the request tracking system). The mailing list 

archive showed no bugs recorded during that time interval 

even though there was activity on the bugs mailing list, 

which indicated that problems did occur. This happened 

during development and deployment of release 3.2. As a 

result, we did not examine release 3.2.  

We used the CVS checkout command to download the 

source code from the CVS repository for releases 2.4 to 3.4 

(except release 3.2). We then used five metrics tools and 

several scripts to compute product metrics for the C source 

files. We computed predictors for each file then summed 

the predictors for all files in the system. 

4.2 Predictor computation 
We briefly discuss the predictors we collect. A detailed 

description of the predictors is in Li et al. [17]. 

We attempted to collect the same metrics as the referenced 

studies (discussed in section 5). We collected the same 

metrics when possible and collected metrics that capture 

the same intent otherwise. All the predictors used in 

previous studies were product metrics. We computed 

product metrics (106 metrics) and development metrics (22 

metrics) that capture each sources of variance in product 

and development metrics identified by Munson and 

Khoshgoftaar in [23] and by Khoshgoftaar et al. in [14]. 

Furthermore, we computed metrics that capture information 

about deployment and usage (9 metrics) and software and 

hardware configurations in use (7 metrics).  

We collected deployment and usage metrics in two 

categories: mailing list predictors and request tracking 

system predictors. Mailing list predictors counted the 

number of messages to non-hardware related mailing lists 

during development. We believed our mailing list 

predictors were valid because they quantified the amount of 

interest in OpenBSD, which might be related to 

deployment and usage. Request tracking predictors counted 

the number of problem reports during development that 

were not defects (e.g. documentation problems). We 

believed our request tracking system predictors were valid 

because users had to install OpenBSD and use the system 

before they could report a problem. An example of a 

deployment and usage metric is TechMailing, which is the 

number of messages to the technical mailing list during the 

development period.  

We collected software and hardware configuration metrics 

in two categories: mailing list predictors and request 

tracking system predictors. Mailing list predictors counted 

the number of messages to hardware specific mailing lists 

during development. We believed our mailing list 

predictors were valid because they reflected the amount of 

interest/activity related to the specific hardware, which 

might be related to how many of the specified hardware 

machines had OpenBSD installed. Request tracking 

predictors counted the number of defects (field defects and 

development defects) during development that identified 

the type of hardware used. We believed our request 

tracking system predictors were valid because users had to 

install OpenBSD on the specified HW before they could 

report a problem. An example of a software and hardware 

configurations metric is AllDefectHWSparc, which is the 

number of field defects reported against all active release 

during the development period that identify the machine as 

of type Sparc.  

5. DATA ANALYSIS  
In this section, we describe the modeling methods in each 

referenced work as well as the adjustments we had to make.  

A more detailed discussion is in [18]. 

We predicted model parameters using each of the metrics-

based modeling method (the same method for all model 

parameters). Accuracy of the resulting field defect-

occurrence rate forecast was evaluated using the Theil 

forecasting statistic. Analysis was preformed using the 

open source statistical package R [27].  

The Theil statistic compares the forecast for each time 

interval i against a no-change forecast based on the 

previous time interval's value [29]. 

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



The Theil statistic U is greater or equal to zero. The term Pi

is the projected change and Ai is the actual change in 

interval i. A Theil statistic of zero indicates perfect 

forecasts with Pi = Ai. A Theil statistic of one indicates that 

forecasts are no better than no-change forecasts with Pi = 0. 

Values greater than 1 indicate forecasts are worse than no-

change forecasts. We consider forecasts accurate if the 

resulting Theil statistic is less than 1. 

5.1 Principal component analysis, clustering, 

and linear regression 
We roughly replicated (explained below) the principal 

component analysis (PCA), clustering, and linear 

regression method in Khoshgoftaar et al. [10]. PCA 

constructs new predictors that capture all the variation in 

the original predictors using linear combinations of the 

original predictors. Clustering groups observations together 

based on predictors’ values. 

Khoshgoftaar et al. [10] constructed principal components 

and then clustered observations using the principal 

components. They fitted linear models to the observations 

in each cluster. To predict for a new observation, the 

observation was placed into one of the clusters based on its 

predictors’ values. The fitted linear model for the cluster 

was then used to predict for the new observation. 

Khoshgoftaar et al. [10]  predicted field defects for modules 

using 11 product metrics. They fitted models using 260 

observations in four clusters. Since we only had 9 

observations, we modified the process to use two clusters 

and to fit a null linear model for each cluster (i.e. an 

average of the observations). In addition, we did not have 

enough observations to perform a PCA. Therefore, when 

using the same predictors as the original study, we used the 

linear coefficients of the referenced work to construct 

principal components. When using all the predictors, we 

did not conduct a PCA. We used the popular K-means 

clustering method, since Khoshgoftaar et al. [10] did not 

identify the clustering method used.  

5.2 Linear regression with model selection 
We replicated the linear regression with model selection 

method in Khoshgoftaar et al. [11] and in Khoshgoftaar et 

al. [8]. Linear regression models the predicted value using a 

linear combination of predictors’ values. Model selection 

keeps predictors that improve the fit significantly as judged 

by a model selection criterion (e.g. AIC).  

Khoshgoftaar et al. [11] and Khoshgoftaar et al. [8] used 

backwards and stepwise model selection techniques to 

select a subset of predictors. They fitted a linear regression 

model using the selected predictors and the least squares 

method. To predict for a new observation, the predictors’ 

values and the fitted model were used to estimate the value. 

Khoshgoftaar et al. [11] and Khoshgoftaar et al. [8] 

predicted field defects for modules of two systems using 8 

product metrics for one system and 11 product metrics for 

the other system. They used 188 and 226 observations to fit 

models for the two systems. Due to data constraints, we 

modified our model selection method to select only one 

predictor (to prevent over fitting). Since no model selection 

criterion was identified in Khoshgoftaar et al. [11] and 

Khoshgoftaar et al. [8], we used the popular AIC model 

selection criterion. 

5.3 Non-linear regression  
We replicated the non-linear regression method used in 

Khoshgoftaar and Munson [9] and in Khoshgoftaar et al. 

[8]. Non-linear regression models the predicted value using 

a non-linear combinations of the predictors’ values.  

Khoshgoftaar and Munson [9] and Khoshgoftaar et al. [8] 

used non-linear least squares regression to construct non-

linear models of the form: 

y = b0 + b1 * (LOC)
b2

y = number of faults, b0, b1, b2 were modeling parameters, 

LOC was lines of code 

For a new observation, the value of the lines of code 

predictor was inserted into the fitted model to produce a 

prediction.  

Khoshgoftaar and Munson [9] and Khoshgoftaar et al. [8] 

used 15 observations to train the model. We found that it 

was not possible to fit a model with three parameters using 

9 observations; therefore, we simplified the model by 

dropping a modeling parameter. Our model was: 

y = b1 * (LOC)
b2

5.4 Trees  
We replicated the Classification and Regressions Trees 

(CART) method in Khoshgoftaar and Seliya [13]. The trees 

method iteratively splits observations into similar groups as 

judged by the predicted value using predictors’ values. 

Khoshgoftaar and Seliya [13] built a regression tree using 

training observations and a minimum node size of 10. To 

predict for a new observation, the observation traversed the 

tree until it reached a leaf node. The mean of the training 

observations in the leaf node was the predicted value of the 

new observation. 

Khoshgoftaar and Seliya [13] predicted field defects in 

modules using 9 product metrics. They fitted models using 

4648 observations. Since we had at most 9 training 

observations, we built trees with varying minimum node 

sizes of between 2 to 7.  

5.5 Neural networks 
We replicated the feed-forward neural networks method 

used in Khoshgoftaar et al. [12] and Khoshgoftaar et al. 

[11]. Neural networks use non-linear functions to combine 

predictors’ values to produce an output.  

A neural networks model is a multi-layer perceptron model 

that produces a value between 0 and 1. The predictors are 

in one layer, with each predictor as one neuron, and the 

output is in one layer. A non-linear function is used to 

U
2
 = 

 (Pi – Ai )
2

Ai
2

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



combine values to connect layers and to produce the output. 

For a new observation, the predictors’ values are placed on 

the outer layer and the predicted value between 0 and 1 is 

produced at the output neuron.  

Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11] scaled 

all values (predictors and the predicted value) to be 

between 0 and 1 by dividing by the value of the maximum 

element in each set. The data were then used to fit a neural 

network. To predict for a new observation, the predictors’ 

values were used to produce a value between 0 and 1. The 

value was then scaled up according to the range of the 

predicted value in the training set.  

Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11]  

predicted field defects for the same two systems as the 

linear regression with model selection method. They used 

16 and 18 hidden layer neurons for the two systems. We 

modified the process by fitting separate neural networks for 

each predictor (i.e. one input neuron) using one hidden 

layer neuron. For each release, we selected the best model 

by evaluating fitted values. The most accurate model was 

then used to make predictions for the next release.  

5.6 Exponential smoothing and moving 

averages
We replicated the moving averages and exponential 

smoothing methods used in Li et al. [15].  

To predict for the next release, a weighted average of the 

values from historical releases was used. For the moving 

averages method, each historical release received equal 

weight. For exponential smoothing method, releases closer 

in time received more weight, since recent releases might 

be more similar to the current release. Li et al. [15] 

considered averaging 2-7 releases. We made no 

modifications to the method.  

6. RESULTS  
This section summarizes results of our 99 forecasting 

experiments. The top 10 SRGM, prediction method, and 

predictors combinations based on the average Theil statistic 

are in table 2. Complete results are in [18]. 

No training data was available for the first release (R2.4) 

and we excluded release 3.2; therefore, we predicted for 

nine releases. Many combinations were not able to predict 

for all releases because the modeling methods required 

additional data.  

Our approach yields accurate forecasts, as measured by the 

Theil statistic (discussed in section 5). The accuracy is also 

evident upon a visual inspection of our forecasts. A plot of 

the nine releases and forecasts of the top three 

combinations are in figure 2. 

Table 2.  Theil forecasting statistics 

Model, method, predictor combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4 Avg 

Exponential model using the moving averages method of 2 

releases using no predictors 
  .7520 .5911 .5267 .3099 .5982 .6925 .6142 .4360 .5651 

Exponential model using the non-linear  regression method using 

lines of code (same predictors as referenced work) 
      .7017 .3172 .7830 .6788 .4023 .5079 .5651 

Exponential model using the trees method splitting with six 

observations using all predictors  
.7048 .7520 .4407 .6978 .2984 .5713 .6745 .6754 .2991 .5682 

Exponential model using the exponential smoothing method of 

five releases using no predictors  
      .2973 .6795 .6795 .6858 .6058 .6547 .5846 

Gamma model using the non-linear method using lines of code 

(same predictors as referenced work) 
      .6690 .4052 .7056 .6590 .4393 .6412 .5866 

Exponential model using the exponential smoothing method of 

four releases using no predictors 
    .6462 .3222 .3222 .6469 .6890 .6117 .6180 .5890 

Exponential model using the moving averages method of four 

releases using no predictors  
    .6978 .3047 .3047 .6418 .6883 .5264 .6854 .5907 

Exponential model using the exponential smoothing method of 

two releases using no predictors  
  .6436 .6436 .5365 .3577 .6202 .6926 .6746 .4386 .5908 

Exponential model using trees method splitting on with 7 releases 

using all predictors  
.7048 .7520 .4407 .6978 .2983 .7854 .6745 .6754 .2991 .5920 

Exponential model using the moving averages method of three 

releases using no predictors 
  .4407 .6504 .6166 .3695 .6610 .6926 .6834 .6207 .5932 

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



Figure 2. Predicted defect-occurrence rates at the time of release 

The trees method splitting with a minimum of six 

observations using the Exponential model and all predictors 

is the best combination (highlighted in table 2). It is able to 

predict for all releases and its average Theil statistic is 

within .0032 of the best Theil statistic. In addition, of the 

top ten combinations, it has the best Theil statistics for 6 

out of the 9 releases (more than any other combination) and 

its Theil statistics is within .401 of the best Theil statistics 

for all releases. The predictors used in the trees are in table 

3. The fitted trees for the two parameters of the Exponential 

model for Release 3.4 (the most recent release) are in 

figures 3 and 4.  

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



Table 3.  Predictors used 

Metric Definition 
Prediction 

used 

AllDefectHW 

Sparc

Field defects reported during the 

development period that identify the 

machine as of type Sparc 

parameter N 

for R3.0 and 

R3.3 

LOC Lines of code 

parameter 

for R3.0 and 

N for R3.1 

Comment 

Inline
Inline comments 

parameter 

for R3.1 and 

R3.3 

TechMailing
Messages to the technical mailing list 

during the development period 

parameter N 

for R3.4 

NotCUpdate
Updates (deltas) to non-c-source-files 

during the development period 

parameter 

for R3.4 

Figure3. Fitted CART for Exponential parameter N for release 3.4 

Figure 4. Fitted CART for Exponential parameter  for release 3.4 

7. DISCUSSION  
In this section, we present our conclusions regarding 

SRGMs, modeling methods, and predictors based upon our 

results.  

7.1 Reliability models 
Our results indicate that the simple Exponential model is 

better than more complex models like Gamma and Weibull 

models when forecasting field defect-occurrence rates 

before deployment. 

Post facto fits had shown the Weibull model to be the best 

model based on AIC, which penalized for extra model 

parameters. However, in our experiments, nine out of the 

top ten combinations used the Exponential model. The 

Exponential model had only two model parameters that 

needed to be predicted. The Weibull and Gamma models 

each had three. In addition, the model form of the 

exponential model was simpler. The Exponential model did 

not have a power term, thus errors in parameter predictions 

were not magnified. These factors might have contributed 

to better forecasts using the Exponential model. 

7.2 Modeling methods 
Our results indicate that the trees method can predict model 

parameters that result in accurate forecasts even when data 

are scarce.   

We had at most 9 training observations (in a real world 

setting, more data is unlikely to be available). Other 

metrics-based modeling techniques might not have been 

effective because they did not have enough training data. 

For example, the neural network method in Khoshgoftaar et 

al. [12] and Khoshgoftaar et al. [11] had ~20x more 

training observations. If more data were available, other 

metrics-based methods might have produced better results. 

However, the trees method was effective even though 

Khoshgoftaar and Seliya [13] had ~500x more training 

observations. This supported our conclusion that the trees 

method was the best method.  

7.3 Predictors  
Our results indicate that accurate forecasts (i.e. forecasts 

that are in the top ten in terms of the Theil forecasting 

statistic) are possible even with few (e.g. only lines of 

code) or no predictors.  

Six out of ten combinations in the top ten were moving 

averages or exponential smoothing methods. They did not 

use any predictors. Of the other four methods in the top ten, 

two used all the predictors (trees methods) and two used 

only lines of code (non-linear regression methods).  

First, since we collected 145 predictors and had at most 9 

observations in the training set, spurious fits (i.e. fits that 

are better by chance) might have occurred. This might have 

reduced the benefits of having more predictors.  

When all the predictors were used, the important predictors 

included predictors capturing characteristics of the 

development process (NotCUpdates), of the deployment 

and usage pattern (TechMailings), and of the software and 

hardware configurations in use (AllDefectHWSparc). Out 

findings supported previous findings that non-product 

related metrics are important predictors of field defects 

(e.g. Mockus et al. [22]).    

Secondly, as evident in figure 2, the field defect-occurrence 

patterns of OpenBSD releases were very similar and thus 

changes in predictors did not correspond to changes in 

model parameter values. The developers of OpenBSD 

might have been able to evaluate their ability to implement 

features and to fix defects. Thus, the releases were released 

with similar quality and similar field defect occurrence 

patterns. The field defect-occurrences rates peaked within 3 

months of the release date for all but two of the releases,.  

8. CONCLUSION  
In this case study, we have forecasted field defect 

occurrence rates over the entire lifespan of releases using 

only information available before release for OpenBSD 

using a novel approach of combining the time-based 

approach and the metrics-based approach. The results are 

interesting and appropriate for a case study; however, they 

need to be replicated to show general applicability. We 

envision replicating our experiment for commercial 

systems to examine differences due to development 

methods, as well as for other open source software systems.  

We have shown that accurate forecasts are possible, as 

measured by the Theil forecasting statistic; however we 

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



have not determined if the forecasts are accurate enough for 

quantitatively-based decision making methods. Future work 

needs to address the issue. Confidence bounds and intervals 

also need to be considered. 

We have tried to replicate modeling methods and to collect 

the same metrics as in previous studies. However, there 

may be differences due to specific definitions and modeling 

tuning parameters. These differences are acceptable for 

empirical replications as discussed by Ohlsson and 

Runeson in [25].    

Our field defect-occurrence rates forecasts are steps 

towards quantitatively-based decision making, which can 

lower the risks associated with field defect occurrences. 

9. ACKNOWLEDGMENTS 
This research was supported by the National Science Foundation 

under Grants ITR-0086003 and CCF-0438929, by the Carnegie 

Mellon Sloan Software Center, and by the High Dependability 

Computing Program from NASA Ames cooperative agreement NCC-

2-1298. We would like to thank the developers of OpenBSD for their 

insight and tool vendors who gave us trial licenses.  

10. REFERENCES  
[1] Norman Fenton and Martin Neil. Software metrics: road map. 

Proc. ICSE, May 2000, pp. 357-370. 

[2] Donald E. Harter and Mayuram S. Krishnan and Sandra A. 

Slaughter. Effects of Process Maturity on Quality, Cycle Time, 

and Effort in Software Product Development. Management 
Science, vol. 46 no. 4, Apr 2000, pp. 451-466.  

[3] Wendell Jones, John Hudepohl, Taghi Khoshgoftaar, and 

Edward Allen. Applications of a Usage Profile in Software 

Quality Models. Proc. 3
rd

 European Conference on Software 
Maintenance and Reengineering, Mar 1999, pp. 148-157. 

[4] Garrison Kenny. Estimating Defects in Commercial Software 

during Operational Use. IEEE Tr. on Reliability, vol. 42 no. 1, 

Mar 1993, pp. 107-115. 

[5] Taghi M. Khoshgoftaar and Edward B. Allen. Predicting fault-

prone software modules in embedded systems with classification 

trees. Proc. HASE, Nov 1999, pp. 105-112. 

[6] Taghi Khoshgoftaar, Edward Allen, and Jianyu Deng. 

Controlling Over-fitting in Software Quality Models: 

Experiments with Regression Trees and Classification. Proc. 
METRICS, Apr 2001, pp. 190-198. 

[7] Taghi M. Khoshgoftaar and Edward B. Allen and John P. 

Hudepohl and Stephen J. Aud. Application of Neural Networks 

to Software Quality Modeling of a Very Large 

Telecommunications System. IEEE Tr. on Neural Networks, vol. 

8 no. 4, Jul 1997, pp. 902-909. 

[8] Taghi Khoshgoftaar, Bibhuti Bhattacharyya, and Gary 

Richardson. Predicting Software Errors, During Development, 

Using Nonlinear Regression Models: A Comparative Study. 

IEEE Tr. On Reliability, vol. 41 no. 3, Sep 1992, pp. 390-395. 

[9] Taghi Khoshgoftaar and John Munson. Predicting Software 

Development Errors using Software Complexity Metrics. IEEE 
J. Selected Areas in Communications, vol. 8 no. 2, Feb 1990, pp. 

253-261. 

[10] Taghi Khoshgoftaar, John Munson, and David Lanning. A 

Comparative Study of Predictive Models for Program Changes 

during System Testing and Maintenance. Proc. ICSM, Sep 1993, 

pp. 72-79. 

[11] Taghi Khoshgoftaar, Abhijit Pandya, and David Lanning. 

Application of Neural Networks for Predicting Program Fault. 

Annals of Software Engineering, vol. 1, 1995, pp. 141-154. 

[12] Taghi Khoshgoftaar, Abhijit Pandya, and Hamant More. A 

Neural Networks Approach for Predicting Software 

Development Faults. Proc. ISSRE, Oct 1992, pp. 83-89. 

[13] Taghi Khoshgoftaar and Naeem Seliya. Tree-based Software 

Quality Estimation Models for Fault Prediction. Proc. 

METRICS, Jun 2002, pp. 203-214. 

[14] Taghi Khoshgoftaar, Vishal Thaker, and Edward Allen. 

Modeling Fault-prone Modules of Subsystems. Proc. ISSRE, Oct 

2000, pp. 259-267. 

[15] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P. 

Santhanam. Empirical Evaluation of Defect Projection Models 

for Widely-deployed Production Software Systems.  Proc. FSE,
vol. 29 no. 6, Oct 2004, pp.263-272. 

[16] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P. 

Santhanam. Empirical Evaluation of Defect Projection Models 

for Widely-deployed Production Software Systems.  CMU Tech 
Report CMU-ISRI-04-130, 2004 

[17] Paul Luo Li, Jim Herbsleb, and Mary Shaw. Finding Predictors 

of Field Defects for Open Source Software Systems in 

Commonly Available Data Sources: a Case Study of OpenBSD. 

Proc. METRICS, Sep 2005, (to appear).  

[18] Paul Luo Li, Jim Herbsleb, and Mary Shaw. ForecastingField 

Defects Using a Combined Time-based and Metrics-based 

Approach: a Case Study of OpenBSD. CMUTechReport, CMU-
ISRI-05-125, 2005.  

[19] Zhaohui Liu, Nalini Ravishanker, and Bonnie Ray. Modeling 

Dynamic Reliability Growth Using Bayesian Methods. 

Reliability Review, vol. 23 no. 1, Mar 2003, pp. 5-9.  

[20] Michael Lyu. Handbook of Software Reliability Engineering.

McGraw-Hill, 1996. 

[21] Audris Mockus, David Weiss, and Ping Zhang. Understanding 

and Predicting Effort in Software Projects. Proc. ICSE, May 

2003, pp. 274-284. 

[22] Audris Mockus, Ping Zhang, and Paul Luo Li. Predictors of 

Customer Perceived Quality. Proc. ICSE, May 2005, pp. 225-

233. 

[23] John Munson and Taghi Khoshgoftaar. The Dimensionality of 

Program Complexity. Proc. ICSE, May 1989, pp. 245-253. 

[24] John Musa and Anthony Iannino and Kazuhira Okumoto. 

Software Reliability. McGraw-Hill, 1990. 

[25] Magnus Ohlsson and Per Runeson. Experience from Replicating 

Empirical Studies on Prediction Models. Proc. METRICS, Jun 

2002, pp. 217-226. 

[26] Thomas Ostrand, Elaine Weyuker, and Thomas Bell. Where the 

Bugs are. Proc. ISSTA, vol. 29 no. 4, Jul 2004, pp. 86-96. 

[27] The R project for statistical computing. www.r-project.org 

[28] Norman F. Schneidewind. Body of Knowledge for Software 

Quality Measurement. IEEE Computer, vol. 35 no. 2, Feb 2002, 

pp. 77-83. 

[29] Henri Theil. Applied Economic Forecasting. North-Holland 

Publishing Company Netherlands, 1966. 

[30] OpenBSD www.openbsd.org

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 


