
1

A Highly Selective, Deeply
Biased, and Mildly
Heretical View of

Software Engineering

Jim Herbsleb
School of Computer Science
Carnegie Mellon University

2

Outline

  Software engineering isn’t
  Our conception of software engineering is

pathologically narrow
  Where humans fit into the picture
  The data tsunami
  Research examples:

− Coordination – results and theory
− Open source ecology

3

Is “Software Engineering” Really Engineering?

  Engineering: “the disciplined application of
scientific knowledge to resolve conflicting
constraints and requirements for problems of
immediate, practical significance.”

  “In Chem E, when I needed to design a heat
exchanger, I used a set of references that told
me what the constants were . . . and the
standard design equations. . . .”

  “the critical difference is the ability to put
together little pieces of the problem that are
relatively well known, without having to generate
a custom solution for every application . . .”

Prospects for an Engineering Discipline of Software, by Mary Shaw

4

A New Flavor of Engineering?

  How to advance the field?
−  Should we aspire to be a “typical” engineering discipline?
−  Do we require a different approach?

  “Essential” (as opposed to “accidental”)
problems
−  Complexity*
−  Conformity*
−  Changeability*
−  Invisibility*
−  Zero cost reproduction and transmission
−  Design is manufacture

*No Silver Bullet: Essence and Accidents of Software Engineering by Frederick P. Brooks

5

Software Is In Everything

  Typical luxury car has 70-80 processors
−  Infotainment
− Engine function
− Suspension
− Brakes
− Steering

  Increasingly, new features and
competitive advantage come from
software

  The behavior of the environment is
increasingly determined by software

6

Lessig’s Insight

  Four traditional modes of control:
−  Law
−  Norms
−  Markets
−  Architecture

  And now . . . Code
−  Design of code determines possibilities for conduct,

commerce, political action, social interaction, creativity . . .
  Many ethical and moral questions
  But also many sociotechnical questions

−  How to design a system to achieve a policy objective?
−  What side effects? (e.g., DRM)
−  What objectives are achievable?

Code and Other Laws of Cyberspace by Lawrence Lessig

7

Humans in SWE: Role and Scale

Human as
User

Human as
Designer/
Developer

Individual Group/Team Organization
Business

Milieu

HCI
Supply
Chains

Web
Services

CSCW IT

Most
Software

Engineering
Research

Computer
Science

Environment

The Intellectual Challenge

Application
Domains

Culture
Legal

Environment

Social
Processes

User
Needs

Policy
Concerns

9

Humans in SWE: Role and Scale

Human as
User

Human as
Designer/
Developer

Individual Group/Team Organization
Business

Milieu

HCI

ESP
Psych of

Prog.

Supply
Chains

Web
Services

Open
Source

Ecologies

CSCW

Software
Teams

IPD Teams

IT

IT Groups
Product
Custom

SaS

End User Programming

10

Four Disciplines?

CSCW
Software

Engineering

Organizational
Behavior

HCI

11

The Data Tsunami

  Software projects typically keep a very detailed
record of human activity

  Version control (VC) system
−  Maintains all changes to all files – each checkin is a “delta”
−  For each delta, it records

•  Login of the person submitting the code
•  Date and time
•  Size
•  Actual code submitted (“diff”)

  Modification request (MR) system
−  Users, testers, developers request changes
−  Records who, when, what about the request
−  Records all steps in workflow
−  May have link to deltas that implement change
−  Generally support asynchronous discussions

12

In the Best Case

  Data creates a very detailed record of
−  Precisely what was done
−  Who did what when
−  What were the dependencies of the work
−  Why was it done
−  Discussions about each unit of work

  May have similar record for all phases
−  Requirements and design often put under change

management and version control
  Lends itself to network analyses

−  Nodes: people, files, MRs, deltas, etc.
−  Links: task assignment, dependencies, things used

together, etc.

13

Research Examples

  Coordination and Congruence
  Theory of coordination
  Open source ecology

14

Measuring Coordination Requirements

  Dependencies among tasks:
 matrix D where dij ≠ 0 means that task i and task
j are dependent

  Assignments of workers to tasks:
 matrix A where akl ≠ 0 indicates that worker k is
assigned to task l

  Coordination requirements:
 ADAT = R, where rmn ≠ 0 indicates that worker m
and worker n have dependencies in their tasks

Files changed together

Developer modified file

Coordination Requirements for
some unit of work or period of time

From Cataldo, et al, 2006

15

Volatility in Coordination Requirements

From Cataldo, et al, 2006

16

Measuring Congruence

Coordination
Requirements

(R)

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

Coordination
Behavior

(B)

1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1

  Team structure
  Geographic location
  Use of chat
  On-line discussion in MR

system

From Cataldo, et al, 2006

17

Summary of Findings

  Each type of congruence is associated
with shorter development times

  We can measure coordination
requirements and congruence

  Coordination requirements are volatile
and extend beyond the team

From Cataldo, et al, 2006

What kind of theory can account for these results?

18

Theoretical Views of Coordination

  Coordination theory (Malone & Crowston)
−  Match coordination problems to mechanisms
−  E.g., resource conflict and scheduling

  Distributed Cognition (Hutchins, Hollan)
−  Computational process distributed over artifacts and

people

  Distributed AI (Durfee, Lesser)
−  Partial global planning
−  Communication regimens

  Organizational behavior
−  Stylized dependency types, e.g., sequential, pooled
−  Coordination regimens that address each type

19

Technical Coordination Modeled as CSP

  Software engineering work = making decisions
  Constraint satisfaction problem

−  a project is a large set of mutually-constraining decisions,
which are represented as

−  n variables x1, x2, . . . , xn whose
−  values are taken from finite, discrete domains

D1, D2, . . . , Dn
−  constraints pk(xk1, xk2, . . . , xkn) are predicates defined on
−  the Cartesian product Dk1 x DK2 x . . . x Dkj.

  Solving CSP is equivalent to finding an
assignment for all variables that satisfies all
constraints

Formulation of CSP taken from Yokoo and Ishida, Search Algorithms for Agents, in G. Weiss
(Ed.) Multiagent Systems, Cambridge, MA: MIT Press, 1999.

20

  Each variable xj belongs to one agent i
  Represented by relation belongs(xj,i)
  Agents only know about a subset of the

constraints
  Represent this relation as known(Pl, k),

meaning agent k knows about constraint
Pl

  Agent behavior determines global
algorithm

  For humans, global behavior emerges

Distributed Constraint Satisfaction

21

Model, Hypotheses, and Results

Increased
calendar
time

Increased
effort

Defects

Backtracking Distribution of
densely
constrained
decisions

Density of
constraints

Coordination
breakdowns

C

1
B

A

2

Hypotheses:

1  A 2  A
1  B 2  B
1  C 2  C

22

From Micro to Macro: The Eclipse Ecology

  Integrated Development Environment
  Plug-in architecture
  History

−  Initially developed by OTI group at IBM for internal use
−  Intent to provide to a few partners as well

  Decision to open source
−  More competition among vendors
−  Anyone could get in the game
−  Offload some development effort

  Organization
−  Consortium, IBM still in control
−  Foundation, IBM just one member

23

Eclipse Ecology

  Collaboration on commodity software
  Minimal centralized functions

−  Process
−  Membership
−  Infrastructure

  Member decisions
−  What to open source
−  Where and how to participate in community

  How you collaborate and where you compete
depends on software architecture
−  Change framework: community decision
−  Create plug-in: part or all can be proprietary
−  Architecture shapes community and markets

24

Conclusions

  Four disciplines, or blind men and the
elephant?

  Important effects exist at the micro level,
and software engineering is uniquely
positioned to explore them

  Technical characteristics of software also
influence shape and relationships of
organizations, businesses, and markets

