
Center on Architecting
Socio-Technical Ecosystems

Architectural Knowledge and
Organizational Context:

The Case for Socio-Technical Styles

James Herbsleb
Carnegie Mellon University

jdh@cs.cmu.edu

Photolithographic Alignment

•  Small architectural changes have often
killed successful firms

•  Architecture gets embedded into
organization
– Communication paths
– Cognitive filters
–  Problem-solving strategies

Henderson, R.M. & Clark, K.B. (1990). Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms. Administrative
Science Quarterly, 35 (1), pp. 9-30.

Architectural Decisions

•  Influence technical characteristics of product
•  Also constrain design of organization
•  Conway’s Law

–  “Any organization that designs a system will
inevitably produce a design whose structure is a
copy of the organization's communication
structure.”

Conway, M.E. How do committees invent? Datamation, 14, 5 (1968), 28-31

Conway’s Law Is Static

•  Assumes architectural decisions all made up
front, not changed

•  Assumes requirements won’t change
–  Requirements Δ  architecture Δ

•  Assumes simple, static organizational
structure
–  Ignores network structure

•  Assumes implementation will conform to
architectural specification

Varieties of Change

•  Key elements
–  Interfaces (uncertainty, complexity)
–  Allocation of functionality
–  Bending the rules

•  How change propagates
–  Informing vs. negotiating
–  Interests at stake: degrees of “heat”

•  Ability to accommodate change varies dramatically
–  Coordination capability

•  How to bring architectures and organizations
into alignment?

An Approach . . .

•  See successful patterns that recur, e.g.,
– Architectural styles
– Design patterns
–  Problem frames

•  A way of capturing knowledge for
reuse

•  Can we expand such ideas from
technical to socio-technical?

Architectural Style: Pipe and Filter

•  Pipe-and-filter commitments, e.g.,
–  Filter performs local transformation
–  Filters are independent
–  Filters do not know identity of up- or down-stream filters

•  Organizational commitments to handle change
–  Internal filter changes – local, no coordination

(optimistically)
–  Interface changes – regional, just between producer/

consumer groups
–  Changes affecting global attributes – project-wide

Architectural Style: Layers

•  Layered systems commitments, e.g.,
–  Each layer provides service to layer above
–  Each layer acts as a client to layer below
–  Components implement virtual machine

•  Organizational commitments to handle change
–  Internal layer changes – local
–  Interface changes – local if service remains backward

compatible, or client does not need new services
–  Other Interface changes – regional, only between two

layers
–  Changes affecting global attributes – central, or project-

wide

Socio-Technical Style

•  Technical architectural style matched
with organizational arrangements with
the capacity to handle the kinds of
coordination work the style requires.

Coordination Capacity

•  People factors
•  Language skills
•  Culture
•  Expertise & TMS
•  History of

collaboration
•  Organizational

stability

•  Organizational
factors
•  Divergent incentives
•  Divergent strategies
•  Unclear goals
•  Divergent tools,

practices, processes
•  Communication

infrastructure

Coordination Capacity

•  Project factors
•  Number of sites
•  Time zones
•  Disciplinary or

professional
boundaries

•  People have
multiple teams

•  Leadership style

A Few Examples . . .

•  Extracted from developers and architects at
multinational engineering firm

•  Idealized
•  Echoes of product line engineering
•  Not necessarily seen multiple times
•  Have been integrated as a module in

corporate training program for software
architects

This work was done in collaboration with Marcelo Cataldo and
Sangeeth Nambiar.

Component
Forking

Component
Forking

Most components
maintained centrally

Forked component
maintained locally

Component
Forking

Gain: no need to
coordinate across variants

Loss: duplicated effort,
difficulty in maintenance,
impact of changing other
components difficult to
anticipate

Partitioned
Component

Partitioned
Component

Most components
maintained centrally

Common
part
maintained
centrally

Variant part
maintained locally

Partitioned
Component

Gain: no need to
coordinate across variant
parts

Loss: duplicated effort,
difficulty in maintenance,
impact of changing other
components difficult to
anticipate

Component Slicing

Component Slicing

All components
maintained centrally

Variant selected locally
(configuration)

Component Slicing

Gain: simplifies
coordination around
integrating and testing
variants

Loss: must communicate
requirements for variants
to central team

Centralized
Runtime

Dependencies

Centralized
Runtime

Dependencies

Runtime functionality with
complex interdependencies
brought together in single
component

Maintained by team with
global view, e.g., of error
recovery

Centralized
Runtime

Dependencies

Gain: Easier to correctly meet
global requirements, e.g.,
complex error handling

Loss: More difficult to evolve
individual components with
new or different error
conditions, messages

Monolithic Layer-Spanning
Components

Monolithic Layer-Spanning
Components

Most
functionality is
implemented in
layers

Exception
granted for
functionality
with highly
complex
interactions
across layers,
e.g., sensors
actuators, and
computation
for automatic
parking

Monolithic Layer-Spanning
Components

Gain: ability to
coordinate
work within
component B;
use co-located
team

Loss:
potentially very
difficult
integration with
other
components,
unexpected
interactions

An Observation

•  Centralized versus decentralized decision-making
–  Centralized can globally optimize decisions in stable

environments
–  Centralized is bottleneck in highly dynamic environments
–  Centralized is slower, longer and larger information flows
–  Decentralized may be better for solving immediate

problem, may cause future problems

•  Fundamental approach: solve the hardest problems
by assigning all the closely-related work to a single,
co-located team, manage the rest

Some Research Issues

•  How to capture the organizational part?
•  How to capture the dynamism that drives

the style/pattern?
•  Dimensions of coordination capacity?

–  Communication bandwidth
–  Tendency to cooperate
–  Correct anticipation
–  Background knowledge

