Coordination in Global Development

James D. Herbsleb School of Computer Science Carnegie Mellon University

Conway's Law

 "Any organization that designs a system will inevitably produce a design whose structure is a copy of the organization's communication structure."

M.E. Conway, "How Do Committees Invent?" *Datamation, Vol.* 14, No. 4, Apr. 1968, pp. 28–31.

Conway's Law

Components

Teams

Conway's Law

What about the Connectors?

Architectural Decisions + Task Assignment \rightarrow Required Coordination

Research Program

Measuring Coordination Requirements (C_R)

Volatility in Coordination Requirements

$$Diff (C_R, C_A) = card \{ diff_{ij} | cr_{ij} > 0 \& ca_{ij} > 0 \}$$

$$Congruence (C_R, C_A) = Diff (C_R, C_A) / |C_R|$$

$$Carnegie Mellon$$
School of Computer Science

Results

Table 2: Results from OLS Regression of Ef	fects on Task	Performance (+	p < 0.10, * p < 0.05,	** p < 0.01).
	Model I	Model II	Model III	Model IV
(Intercept)	2.987**	3.631**	1.572*	1.751*
Dependency	0.897^{*}	0.653*	0.784^{*}	0.712^{*}
Priority	-0.741*	-0.681*	-0.702*	-0.712*
Re-assignment	0.423*	0.487^{*}	0.304*	0.324*
Customer MR	-0.730	-0.821	-0.932	-0.903
Release	-0.154*	-0.137*	-0.109*	-0.098*
Change Size (log)	1.542*	1.591*	1.428^{*}	1.692*
Team Load	0.307^{*}	0.317^{*}	0.356*	0.374^{*}
Programming Experience	-0.062*	-0.162*	-0.117*	-0.103*
Tenure	-0.269*	-0.265*	-0.239*	-0.248*
Component Experience (log)	-0.143*	-0.143*	-0.195*	-0.213*
Structural Congruence		-0.526*		-0.483*
Geographical Congruence		-0.317*		-0.312*
MR Congruence		-0.189*		-0.129*
IRC Congruence		-0.196*		
Interaction: ReleaseX Structural Congruence		0.007		0.009
Interaction:ReleaseXGeographical Congruence		-0.013		-0.017
Interaction: Release X MR Congruence		-0.009+		-0.011+
Interaction: Release X IRC Congruence		-0.017*		
Ν	809	809	1983	1983
Adjusted R ²	0.787	0.872	0.756	0.854

Effects of Congruence

- Time to complete a work item is reduced by *each* of the types of congruence
 - Team structure congruence
 - Geographic location congruence
 - Chat congruence
 - On-line discussion congruence

Average Level of Congruence for Top 18 Contributors

 \rightarrow IRC \rightarrow MR \rightarrow Structure \rightarrow Geography 0.90 0.80 0.70 Congruence (avg.) 0.60 0.50 0.40 0.30 0.20 0.10 0.00 Release 1 Release 2 Release 3 Release 4

Average Level of Congruence for the Other 94 Developers

School of Computer Science

Research Program

Empirical Studies

- Behavior of coordination requirements
- Effects of congruence
- Closely-coupled work

Theory Development

- Constraint networks
- Network properties
- Game theory

Applications

- Tools Tesseract, eMoose
- Tactics -- Distributability

Theoretical Views of Coordination

- Coordination theory (Malone & Crowston)
 - Match coordination problems to mechanisms
 - E.g., resource conflict and scheduling
- Distributed Cognition (Hutchins, Hollan)
 - Computational process distributed over artifacts and people
- Distributed AI (Durfee, Lesser)
 - Partial global planning
 - Communication regimens
- Organizational behavior
 - Stylized dependency types, e.g., sequential, pooled
 - Coordination regimens that address each type

Three Propositions

- P1: Artifact design is a process of making decisions, and these decisions are linked by constraints in a potentially large and complex network (which we call the "constraint network").
- P2: The need for coordination among individuals and teams arises from the constraints on the decisions they are making.
- P3: What we call task coupling between individuals and between teams is simply the result of the properties of the constraint network and the assignment of decisions to people.

Google Lunar X Prize

Observed Constraint Networks

Properties of Constraint Networks

- Constraint Diffusion
 - Touches many components
 - Influences many decisions
- Constraint Violation Detection
 - When considering a choice, determining if it will violate a constraint
- Decision Constraint Diversity
 - Decision is influenced by many different types of constraints

Example: Total Mass

- High diffusion
- Easy violation detection

Example: Sidearm Design

- Low constraint diffusion
- Difficult violation detection

Example: Antenna Cable

High decision constraint diversity

Constraint Network Analysis

- Goal
 - Understand how constraint network properties generate detailed coordination requirements
 - Lead to novel ways to support distributed work
- Current activities
 - Aggregate constraint networks
 - Observe evolution over time
 - See how network properties influence speed and errors

Research Program

Empirical Studies

- Behavior of coordination requirements
- Effects of congruence
- Closely-coupled work

Theory Development

- Constraint networks
- Network properties
- Game theory

Applications

- Tools Tesseract, eMoose
- Tactics -- Distributability

Research Program

Empirical Studies

- •Behavior of coordination requirements
- Effects of congruence
- Closely-coupled work

Theory Development

- Constraint networks
- Network properties
- Game theory

Applications

- Tools Tesseract, eMoose
- Tactics -- Distributability