
Factors Leading to Integration Failures in Global Feature-
Oriented Development: An Empirical Analysis

Marcelo Cataldo
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213

mcataldo@cs.cmu.edu

James D. Herbsleb
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213

jdh@cs.cmu.edu

ABSTRACT
Feature-driven software development is a novel approach that has
grown in popularity over the past decade. Researchers and practi-
tioners alike have argued that numerous benefits could be gar-
nered from adopting a feature-driven development approach.
However, those persuasive arguments have not been matched with
supporting empirical evidence. Moreover, developing software
systems around features involves new technical and organiza-
tional elements that could have significant implications for out-
comes such as software quality. This paper presents an empirical
analysis of a large-scale project that implemented 1195 features in
a software system. We examined the impact that technical attrib-
utes of product features, attributes of the feature teams and cross-
feature interactions have on software integration failures. Our
results show that technical factors such as the nature of compo-
nent dependencies and organizational factors such as the geo-
graphic dispersion of the feature teams and the role of the feature
owners had complementary impact suggesting their independent
and important role in terms of software quality. Furthermore, our
analyses revealed that cross-feature interactions, measured as the
number of architectural dependencies between two product fea-
tures, are a major driver of integration failures. The research and
practical implications of our results are discussed.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – process metrics, prod-
uct metrics. D.2.9 [Software Engineering]: Management – life
cycle, programming teams.

General Terms
Management, Measurement, Human Factors.

Keywords
Feature-oriented development, cross-feature interaction, global
software development.

1. INTRODUCTION
A product feature is an important concept in software develop-
ment because it conveys attributes of a product relevant to all the
stakeholders involved in the development process. For example, a

customer might communicate his/her requirements for a particular
product as a collection of characteristics or features the product
ought to have or a software architect might make design decisions
based on the collection of features that will be part of a product.
Over the years, researchers and practitioners alike have articulated
a number of benefits that could be garnered from adopting a fea-
ture-driven development approach. For instance from a technical
point of view, past work has argued that feature-driven develop-
ment enhances development flexibility (e.g. [28]), facilitates for-
mal modeling of systems (e.g. [31]) and even leads to higher lev-
els of quality (e.g. [27]). From a process perspective, the concept
of features is an integral part of the software product lines ap-
proach [12]. Finally from an organizational perspective, research-
ers have argued that features represent very valuable entities that
can facilitate coordination, collaboration and overall governance
of software projects [8, 32].

Despite the growing popularity and adoption of feature-driven
software development, we have very limited understanding as to
how the technical attributes of features impact traditional devel-
opment outcomes such as productivity and quality. Furthermore,
there are also a number of organizational parameters that are in-
volved in the usage of a feature-driven development approach
such as configuring feature teams and selecting feature owners.
The current state of the art on how those organizational aspects of
feature-oriented development impact outcomes such as develop-
ment productivity or software quality consists mostly of anecdotal
evidence.

In this paper, we examine the impact that technical attributes of
product features, attributes of the feature teams and cross-feature
interactions have on integration failures. We collected data from a
large-scale global software development project that implemented
1195 features over a period of 32 months of activity. Our results
show that technical and organizational factors have complemen-
tary impact suggesting their independent and important role in
terms of software quality. In particular, we found that the level of
technical coupling within features, the concentration of that cou-
pling across architectural components, the geographic distribution
of feature teams as well as the group membership of feature own-
ers were important factors leading to integration failures. Fur-
thermore, our analyses revealed that cross-feature interactions,
measured as the number of architectural dependencies between
two product features, are a major driver of integration failures.

The rest of the document is organized as follows. We first discuss
past work and the research questions examined in this paper.
Then, we describe our research setting, research design and re-
sults. We conclude with a discussion of the contributions, limita-
tions and future research directions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21-28, 2011, Honolulu, Hawaii, USA.
Copyright © 2011 ACM 978-1-4503-0445-0/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

161

2. INTEGRATION FAILURES IN FEA-
TURE-ORIENTED DEVELOPMENT
Software quality has been the subject of a large body of past re-
search work, and numerous factors that negatively impact soft-
ware quality have been identified (e.g. [7, 10, 13, 14, 17, 25, 26,
30, 34]. A distinctive characteristic of that work is the focus on
particular units of a software system such as files, classes, mod-
ules, components or binaries and how their technical attributes
and patterns of change impact their quality. Those software enti-
ties represent tangible boundaries that support critical design prin-
ciples such as abstraction, information hiding and, in general,
modular design. Feature-driven development introduces a distinc-
tive new element, the product feature, which has characteristics
that differ from what we traditionally consider as a software entity
(e.g. a file, class, module or component). First, product features,
like aspects [20] tend to cut across those traditional software enti-
ties. In doing so, they define new technical boundaries which
might include, for instance, entire components or portions of
them. Second, those new boundaries tend to create a challenging
tension between adequately designing and implementing the nec-
essary functionality of the product features and the integrity of the
architectural components or modules involved or impacted by the
various product features. Given these differences between features
and the traditional software entities, it is important to consider
how the specific technical attributes of features such as the char-
acteristics of architectural dependencies embedded in the feature
impact software quality. In particular, we are interested in soft-
ware quality outcomes in the context of integrating the various
parts that constitute a feature, which is a critical process step in
feature-driven development. This leads to the following research
question:

RQ1a: What is the impact of technical attributes of a
product feature on failures during the integration of
that feature?

It is well established that software development involves not just a
technical dimension but also a socio-organizational one. For ex-
ample, individual-level experience, either technical or domain-
specific, has been found to be an important factor leading to errors
and failures in the development of software systems (e.g. [4, 13,
14]). Configuration aspects of the development teams are also
another important set of factors that impact important software
development outcomes such as quality. For instance, the geo-
graphic dispersion of the team members (e.g. [9, 10]), the charac-
teristics of the leaders and manager as well as their leadership
styles [33], the patterns of interaction on task tracking systems
[34] as well as the number of individuals involved in the devel-
opment of a piece of software (e.g. [17]) impact software quality.

A key aspect of feature-driven development is the establishment
of feature teams to develop the necessary features [27]. Those
teams tend to be short-lived (just for the duration of developing a
feature) and individuals tend to be members of multiple feature
teams. Socio-organizational factors seem likely to play a major
role in the quality outcomes of feature teams, but given the sub-
stantial differences in development organized around feature
teams as opposed to traditional teams, it is difficult to know what
attributes will have important effects. This leads to the following
research question:

RQ1b: What is the impact of organizational attributes
of the feature team on failures during the integration
of a product feature?

The previous paragraphs have considered technical and organiza-
tional factors in the context of a single product feature. However,
product features do not exist in isolation. They depend or interact
with other product features. A growing body of work has shown
that cross-features interactions are a major challenge. Calder and
colleagues [6] argued that current research challenges include
understanding where potential interactions arise, how to determine
that an interaction did in fact occur and how to resolve it. Those
gaps in the literature lead us to the following research question:

RQ2: How can we assess cross-feature interactions
and what is their impact on failures during the inte-
gration of product features?

3. RESEARCH SETTING
We collected data from a development organization responsible
for producing a navigation system for automobiles. Our data cov-
ered 32 months of development activity between 2006 and 2008
corresponding to the last version of the product. One hundred and
seventy nine engineers located in 6 development sites distributed
across North America, Europe and India participated in the pro-
ject. Those developers were organized in 13 development teams.
Most of the teams involved engineers from at least 2 development
sites. Telephone, conference calls and email were the primary
mechanisms of communication among distributed teams and en-
gineers. The use of lightweight collaboration technologies such as
instant messaging and wikis was not allowed. The project also had
daily status meetings organized like scrum meetings.

The system was composed of about 1.5 million lines of code dis-
tributed in 6,789 source code files and 107 architectural compo-
nents. The development responsibilities of each component were
assigned to a single development team. The source code files were
written mostly in C++ but contained a significant amount of code
written in C and Assembly language. All developers had full ac-
cess to the version control system, the task tracking system and a
document repository that contained requirements, architectural
and design specifications.

The project involved the development of 1,195 product features.
The organization utilized a feature-oriented development ap-
proach and it started using that approach 5 years prior to the time
covered by our data. In this project, the software architects and the
software architecture of the system played an important role in the
feature-oriented development process. Software architects were
responsible for analyzing the descriptions of each product feature
and determining the set of architectural components that would
have to be altered or enhanced in order to implement the re-
quested feature. The software architects, then, produce a feature
development specification that contained a description of the work
to be done in each architectural component. The feature teams
used those specifications to do the detailed design and implemen-
tation of the feature. Once a feature development specification
was written, the management of the project defined a feature team
that would be assigned to that particular product feature. The fea-
ture teams were composed of engineers for the teams responsible
from the architectural components that were impacted by the fea-
ture as indicated in the feature specification document. Manage-
ment also assigned a feature owner to each product feature. That
individual was a senior engineer, a group leader or a manager
from one of the teams involved in the feature team. The organiza-
tion did not have any specific process for selecting feature own-
ers. However, project executives tended to base their selection on

162

experience with the type of product feature and they also tried to
balance the feature ownership load across all feature owners.

Once completed, each product feature was delivered to an integra-
tion and testing (I&T) team who was responsible for two activi-
ties. First, they merged the source code of the feature into a pre-
release branch in the version control system. Following that step,
they ran a collection of integration testing suites that evaluated the
feature just integrated as well as all the previously integrated fea-
tures. The test suite consisted of a collection of tests defined by
architects and engineers to evaluate the requirements of each fea-
ture. The I&T team implemented the test suites in two comple-
mentary parts. One part consisted of simple tests (similar in nature
to a “smoke test”) that were run on the software system using a
simulator for the real hardware. A second part of the testing in-
cluded the full implementation of the tests and it was executed
against the software system running on the actual hardware of the
embedded system. The outcomes of the integration tests were
recorded and kept as part of the project’s repositories. The I&T
team recorded for each integration test whether the tests associ-
ated with the recently integrated feature passed or not. They also
recorded whether the tests associated with features integrated in
the past passed or not.

Our empirical analyses are organized in two parts. In section 4,
we examine research questions 1a and 1b related to technical and
organizational attributes of features that lead to integration fail-
ures. In section 5, we examine the role of cross-feature interac-
tions on integration failures (RQ2).

4. WHAT FACTORS DRIVE FAILURES
WHEN INTEGRATING FEATURES?
The first step in our investigation was to examine how technical
attributes of a product feature as well as characteristics of the
feature teams responsible for developing that product feature im-
pact the occurrence of software failures at the time of integrating
the product feature. The literature on software failures is vast and
over the years numerous aspects of a software systems as well as
aspects of the development process have been linked to failures
(e.g. [1, 5, 9, 17, 19, 22, 26, 30, 34]). That work guided us in the
selection of independent variables as well as control factors that
might impact failures during the integration of features. The rest
of this section describes in detail the measures and statistical
models used in our analyses followed by our results.

4.1 Description of the Measures
In order to address research questions 1a and 1b, we collected a
number of measures from various data sources including the pro-
ject’s software repositories and documentation as well as human
resource records.

4.1.1 Measuring Integration Failures
As discussed earlier, the I&T team integrated each feature indi-
vidually. That process allowed the team to run a collection of
integration tests to evaluate the feature just integrated as well as
all the previously integrated features. The I&T team recorded for
each integration test whether the tests associated with the recently
integrated feature passed or not. They also recorded whether the
tests associated with previously integrated features passed or not.
Our outcome measure is a dichotomous variable where a 1 indi-
cates that at least one of the tests performed by the I&T team at
the time of integrating a feature failed. Otherwise, the variable is
set to 0.

4.1.2 Independent Variables
Our independent measures are organized in two groups. We first
describe a collection of technical attributes of the features that
were assessed. The development of each product feature consisted
of one or more transactions in the version control system that
impacted one or more architectural components. From those
transactions, we collected the Changed LOCs, which accounts for
the number of non-comment non-empty lines of code that were
added, deleted and modified as part of developing a feature. In
addition to the amount of change, the locality of those changes
might be relevant to integration failures. For example, if the ma-
jority of the changes are collocated in the single component in-
volved in a feature, it might be easier to test them and assess their
potential impact and implications. On the other hand, if the
changes are dispersed across all the components involved in the
feature, testing the changes or understanding their potential impli-
cation might be more challenging. In order to reach a better un-
derstanding of how those different patterns of code change within
a feature might impact integration failures, we computed the Con-
centration of Changed LOCs measure. Building on past work that
examined the notion of dispersion of software engineers across
development locations (e.g. [7] and [10]), we evaluated two ap-
proaches for constructing the measure. One approach (based on
[7]) uses the standard deviation of the changes made to each com-
ponent involved in a feature. Smaller values indicate that the
changes are relatively evenly distributed among the changed com-
ponents. A second approach builds on entropy-based measures
(e.g. [10]) to assess the degree of concentration of changes in one
particular architectural component. Both measures had equivalent
impact of the results from the regression models. We chose to
include the measure based on the first approach because the fit of
the regression models was higher than the fit obtained when using
the entropy-based approach.

Technical coupling among constituent parts of a software system
has consistently been shown to impact software failures (e.g. [5, 9,
26, 30]). A measure of the extent of the technical coupling within
each feature was collected from the architectural description of
the system. The Number of Dependencies variable refers to the
number of interfaces that the architectural components involved
within a feature had with each other. In other words, Number of
Dependencies measures the inter-component coupling within the
boundaries of a product feature. As in the case of changes in the
source code, the locality of the technical dependencies within a
feature might impact failures. Past work in the area of coupling
and cohesion (e.g. [9, 26, 30]) would suggest that if the inter-
component dependencies within a feature are concentrated in one
or few components, their high levels of coupling could lead to
failures. However, a product feature aggregates those different
patterns of technical coupling, therefore it is unclear how they
might impact failures when considering features as the unit of
analyses rather than architectural components. In order to shed
light on the relationship between technical coupling and product
features, we computed the Concentration of Dependencies vari-
able as the standard deviation of the number of dependencies
among all possible pairs of components involved in a feature.
Smaller values indicate that the dependencies are relatively evenly
distributed among the components involved in a product feature.
As indicated in the previous paragraph, this approach of construct-
ing the measure proved to be a better measure than other ap-
proaches (e.g. an entropy-based measure) for the statistical models
used in our analyses.

163

In a second set of measures we assessed organizational properties
of the feature teams involved in the development of a feature.
GSD is a dichotomous variable where 1 indicates that the feature
team members were located in different development sites; other-
wise it is set to 0. It is worth pointing out that all the project mem-
bers that were collocated work in a single open space in individual
cubicles. We also measured the Number of Developers that were
part of the feature teams. As discussed earlier, feature team mem-
bers were selected from formal groups responsible for the various
architectural components. Therefore, we also measured the Num-
ber of Groups involved in the development of each feature. Fi-
nally, we constructed two measures that assess the relationship
between the organizational and the technical dimensions of devel-
oping a product feature. The feature owner has an important role
within the development effort associated with a feature because it
is the individual responsible for making sure the feature team is
able to accomplish its goal of developing the feature. In our re-
search setting, feature owners were selected from among the
members of the groups responsible for the components being
affected by a product feature suggesting that feature owners might
have particular sets of skills, experiences and relationships that
might benefit certain members of a feature team and hinder oth-
ers. Therefore, we computed the Feature Owner Belongs to
Highly Coupled Component measure as a dichotomous variable,
which is set to 1 if the feature owner belonged to the group re-
sponsible for the component with the highest number of technical
dependencies within the assigned feature. Similarly, we computed
the measure Feature Owner Belongs to Highly Changed Compo-
nent, which is set to 1 if the feature owner belonged to the group
responsible for the component that was changed the most as part
of the development of the focal feature.

4.1.3 Additional Control Factors
We collected a number of additional measures that past research
has shown to be related to software quality and, consequently,
relevant to modeling integration failures [2, 5, 17, 26, 30]. For
each product feature, we collected the Number of Modification
Requests as reported in the modification request (MR) tracking
system associated with each feature. We also collected the Total
Size in LOCs of the components that were involved in a feature. It
is well established that over time development organizations learn
and mature their processes and practices and consequently, tend to
reduce mistakes and errors. Therefore, we computed the variable
Time that represents the week within the project on which the
feature was integrated.

Finally, we collected measures of experience based on the ap-
proaches used by Boh and colleagues [4] and Espinosa and col-
leagues [15], which utilize the data in software repositories as the
basis for assessing experience. We measured prior experience on
the product in two different ways. Average MR Experience as-
sessed the average number of MR that the feature team member
worked on prior to the focal feature. Average Component Experi-
ence measured the average number of times that the feature team
members modified the architectural components associated with
the focal feature prior to the beginning of the development of the
feature.

4.2 Description of the Model
Our dependent measure is a dichotomous variable. Consequently,
we used logistic regression models to examine research questions
1a and 1b. We followed a traditional hierarchical approach where
we start our analyses with a baseline model that contains only

control factors. In subsequent models, we added the various inde-
pendent measures associated with the different research questions.
This modeling approach allows us to understand the independent
and relative impact on integration failures of each set of factors.

In order to assess the fit of each model, we report the deviance of
each model as well as the percentage of deviance explained by the
model. The deviance of a model is defined as “-2 * log-likelihood
of the model” and lower values are associated with better fit of the
model to the data. The percentage of the deviance explained is a
ratio of the deviance of the null model (contains only the inter-
cept) and the deviance of the final model. In order to simplify the
interpretation of the results, we report the odds ratios associated
with each measure instead of reporting the regression coefficients.
Odds ratios larger than 1 indicate a positive relationship between
the independent and dependent variables whereas an odds ratio
less than 1 indicates a negative relationship.

4.3 Results
4.3.1 Preliminary Analyses
The first step in our analysis consisted in examining various de-
scriptive statistics of the measures described earlier. Several vari-
ables had skewed distributions so they were log-transformed. In
the next step, we performed various collinearity diagnostics. A
variance inflation factors (VIF) analysis revealed that several of
the measures were highly collinear. In accordance with well-
established recommendations, we removed from our analyses all
the variables with VIF values above 5 [23]. A pair-wise correla-
tion analysis among those remaining measures showed levels of
correlation that were not problematic with the highest values be-
ing 0.359 and 0.258 between Changed LOCs and Number of De-
pendencies and Time, respectively.

Table 1 reports the results of our regression analyses examining
the impact on integration failures of various technical and organi-
zational factors. Model I reports the odds ratios associated with
the control factors included in our analyses. As expected, Time
and higher levels of Average Component Experiences are associ-
ated with lower probability of failures. For instance, an additional
week in the development project corresponding to a unit increase
in the variable Time reduces the likelihood of failure (odds ratio
equal to 0.992 – lower than 1) by 0.8% considering all other fac-
tors constant.

4.3.2 The Impact of Technical Attributes of Features
We examined research question 1a with model II in table 1. The
model includes the technical attributes of the feature to study their
impact on integration failures. Our results do not provide evidence
that either the amount of source code changed (Changed LOCs)
during the development of the feature or the concentration of
those changes across the various architectural components af-
fected by those changes (Concentration of Changed LOCs) im-
pacted the likelihood of integration failures. On the other hand,
the level of technical coupling (Number of Dependencies) among
the components involved in the feature and the degree of concen-
tration of that coupling (Concentration of Number of Dependen-
cies) do have a statistically significant effect on integration fail-
ures. We observe that the higher the number of architectural de-
pendencies among the components that are impacted by a feature,
the higher the likelihood of failures (odds ratio > 1). Moreover,
the higher the concentration of the coupling in a smaller number
of components is, the higher is the likelihood of integration fail-
ures.

164

Table 1. Odds Ratios from Regression Assessing Factors Driving Feature Integration Failures

 Model I Model II Model III Model IV
Time 0.992* 0.990* 0.990* 0.989*
Average Component Experience (log) 0.487* 0.984+ 0.741+ 0.754
Changed LOCs 1.021 1.089 1.063
Concentration of Changed LOCs 1.045 1.028 1.036
Number of Dependencies (log) 1.107* 1.091* 1.091*
Concentration of Number of Dependencies 1.032** 1.046** 1.078**
Number of Groups 1.101* 1.051*
GSD 13.924** 14.964**
Feature Owner Belongs to Highly Changed Component 0.789 0.396
Feature Owner Belongs to Highly Coupled Component 0.839** 0.819**
Concentration of Changed LOCs X F. Owner Belongs to Highly Changed Component 1.032
Concentration of Number of Dependencies X F. Owner Belongs to Highly Coupled Comp. 0.977**
GSD X Feature Owner Belongs to Highly Changed Component 3.736
GSD X Feature Owner Belongs to Highly Coupled Component 0.926
Deviance of the Model 755.2 639.0 458.4 412.2
Deviance Explained 11.7% 25.3% 46.4% 51.8%
(+ p < 0.1; * p < 0.05; ** p < 0.01)

4.3.3 The Impact of Organizational Attributes of
Feature Teams
In model III, we examined the role that organizational attributes
of the feature teams have on integration failures (RQ1b). We ob-
serve that several organizational factors have a statistically sig-
nificant impact on integration failures. As the number of devel-
opment groups that work on a feature increases, so does the prob-
ability of occurrence of integration failures. In addition, geo-
graphic dispersion of the feature team has a major impact of inte-
gration failures. When the engineers that worked on the feature
were geographically distributed, the likelihood of integration fail-
ures is almost 14 times higher than when all engineers are in the
same location (odds ratio = 13.924). We also examined how the
group membership of the feature owner impacted the outcome of
the feature teams. We found that selecting the feature owner from
the group that is responsible for the architectural component with
the highest level of technical coupling within the product feature
helps reduce the probability of integration failures to occur. Spe-
cifically, having the feature owner belong to the group responsible
for the highest coupled component decreases the likelihood of
failures by about 20% (odds ratio=0.839) compared to not having
the feature owner belong to that development group.

Models II and III provide insight on the relative impact on failures
of the technical attributes of product features and organizational
characteristics of feature teams. Organizational attributes explain
21.1% of the deviance in the data (the difference in the deviance
explained between model II and III) whereas technical attributes
of feature explained 13.6% of the deviance. Those results high-
light the significant impact that the characteristics of feature teams
have on the outcomes of feature-driven development endeavors

4.3.4 Additional Analyses
We performed additional analyses to examine the potential condi-
tional impact of particular factors such as which group the feature
owner belonged to and the geographic dispersion of the feature
team. The conditional impact of the variables can be studied with
interaction terms in a regression model. An interaction between two
factors, for instance, GSD and Feature Owner Belongs to Highly
Coupled Component, allows us to examine how the impact of one
factor (e.g. Feature Owner Belongs to Highly Coupled Compo-

nent) on the dependent variable changes for different values of the
second factor (e.g. feature team is collocated or not).

In model III, we found that the group to which the feature owner
belongs is an important organizational factor in the context of inte-
gration failures. However, the impact of such factor might differ
depending whether the feature team members are geographically
distributed or not. In addition, the level of concentration in the
changes to the code or in the technical coupling among components
might moderate the impact of having the feature owner belonging to
a particular group. For example, it might be only beneficial to have
the feature owner belong to the group that is responsible for the
component with the highest amount of changes or dependencies
only when the concentration levels are relatively high. In order to
explore those potential conditional effects, model IV of table 1 in-
cludes several interaction terms that were selected based on the
results reported in models II and III. All independent variables were
mean-centered, an approach traditionally used to address the collin-
earity issues introduced by the interaction terms.

Figure 1: The Interplay between the Concentration of Techni-
cal Coupling within a Feature and the Feature Owner Belong-

ing to the Highly Coupled Component.
The results reported in model IV show only one interaction term,
Concentration of Number of Dependencies X Feature Owner
Belongs to Highly Coupled Component, is statistically significant

165

suggesting that the impact of the concentration of the technical cou-
pling within a feature is moderated by whether the feature owner
belongs to the group responsible for the highly coupled components
or not. An odds ratio below 1 indicates that when the feature owner
belongs to the group responsible for the highest coupled component,
the negative impact of higher levels of concentration of the techni-
cal coupling is reduced. Figure 1 illustrates this point by depicting
how the probabilities of integration failure estimated by our logistic
regression models change as the number of dependencies changes.
As the concentration of the number of dependencies increases (x
axis), we observe that the estimated probability of failure (y axis)
increases faster when the feature owner does not belong to the
group responsible for the component with the highest level of cou-
pling (solid line in figure 1) than when the feature owner belongs to
the group responsible for the component with the highest level of
coupling (dashed line in figure 1). In fact, the probability of failure
reduces by half in the latter case where the number of dependencies
is higher than 40. Furthermore, we see that this relationship inverts
for lower values of concentration in the number of dependencies
(values < 20).

5. CROSS-FEATURE INTERACTIONS
AND INTEGRATION FAILURES
We now turn our attention to cross-feature interactions and their
implication for integration of features. In particular, we examine
how architectural dependencies that represent relationships be-
tween product features impact the occurrence of integration fail-
ures in a feature-driven development setting. The rest of the sec-
tion describes in detail the measures and statistical models used in
our analyses as well as the results of our investigations.

5.1 Description of the Measures
In order to address research question 2, we collected a number of
measures from various data sources including the project’s soft-
ware repositories, documentation and human resource records.

5.1.1 Measuring Integration Failures
In this case, our unit of analysis is the pair of product features. As
described in section 3, product features were integrated into a pre-
release development stream individually. Then, the I&T team ran
a collection of integration tests every time a feature was inte-
grated. Using such information, we constructed our dataset of
pairs of features in the following way. When a feature Fn was
integrated, we created n-1 pairs (F1, Fn) … (Fn-1, Fn). Considering
all 1,195 features developed in the project and integrated, we had
a total of 713,416 possible pairs of features. Our dependent meas-
ures is a dichotomous variable where a 1 associated with a pair of
features (Fx, Fy) indicates that the integration tests associated with
either features Fx or Fy failed at the time of integrating feature Fy
(assuming that feature Fy was integrated after feature Fx).

5.1.2 Measuring Cross-Features Interactions
We measured the Number of Cross-Features Dependencies for a
pair of features (Fx, Fy) as the number of architectural dependen-
cies that the components involved in feature Fx had with the com-
ponents involved in feature Fy. The data about architectural de-
pendencies were extracted from the project’s software architecture
documentation that contained detailed descriptions of all 107 ar-
chitectural components and their relationships.

5.1.3 Additional Control Factors
We collected a number of additional measures for each pair of
features. Since our unit of analysis is the pair of features, integra-

tion failures could be impacted by a buggy feature that was inte-
grated in the past rather than by the feature being integrated. In
order to control for this effect, we constructed dichotomous vari-
ables, Past Failures in the Past X Weeks. These variables meas-
ured the impact of past failures associated with the features that
were integrated in the past – feature Fx in a given pair (Fx, Fy) –
when integrating a new feature Fy. We considered 1 to 10 weeks
time periods. For example, the variable Past Failures in the Past 5
Weeks would be set to 1 for the pair of features (Fx, Fy) if there
has been an integration testing failure associated with Fx in the
past 5 weeks prior to integrating feature Fy. We measured the
Changed LOCs as the number of non-comment non-empty lines
of code that were added, deleted and modified as part of develop-
ing both features in each pair. The measure Number of Modifica-
tion Requests captured the number of MRs associated with each
pair of features as reported in the MR tracking system. It is well
established that over time development organizations learn and
mature their processes and practices and consequently, tend to
reduce mistakes and errors. Therefore, we computed the variable
Time for each pair of features (Fx, Fy) that represents the week
within the project on which the feature Fy was integrated.

We also assessed a set of organizational properties of the feature
teams involved in the development of each pair of features. GSD
is a dichotomous variable where 1 indicates that the members of
either feature teams involved in the development of the features in
a given pair (Fx, Fy) were located in different development sites;
otherwise it is set to 0. As indicated earlier, all the project mem-
bers that were collocated work in a single open space in individual
cubicles. We also measure the Number of Groups involved in the
development of each pair of features as well as the Number of
Developers that were part of those feature teams. The engineers
involved in the development of a pair of features that belong to
the same formal groups responsible for certain architectural com-
ponents might have more opportunities to interact, communicate
and coordinate than if they belong to different formal teams.
Then, we computed the Overlap Among Groups as the proportion
of feature team members from Fx that belong to the same set of
formal groups that the members of the feature team associated
with Fy. We also computed the Same Feature Owner measure as a
dichotomous variable set to 1 if the same individual was the fea-
ture owner for the pair of features; otherwise the measure was set
to 0. Finally, we collected measures of experience based on the
approaches used by Boh and colleagues [4] and Espinosa and
colleagues [15]. We measured prior experience on the product in
two different ways. Average MR Experience measures the average
number of MR that the feature teams’ members associated with a
pair of features worked on prior to the focal feature. Average
Component Experience represents the average number of times
that the feature teams’ members modified the components associ-
ated with each pair of features.

5.2 Description of the Model
As in the case of the analyses reported in the previous section, our
dependent measure is also dichotomous variable. Consequently,
we followed the same modeling strategy (the use of logistic re-
gression models) described in section 4.2.

5.3 Results
5.3.1 Preliminary Analysis
We performed preliminary analysis similar to those described in
section 4.3.1. In order to reduce estimation problems associated

166

Table 2. Odds Ratios from Regression Assessing the Impact of Cross-Feature Interactions on Integration Failures

 Model I Model II Model II
Time 0.981** 0.971** 0.964*
Failures in the Past 5 Weeks 2.127** 1.125* 1.011*
Changed LOCs 1.371** 1.201** 1.203**
Average Component Experience (log) 0.837+ 0.997 0.908
Number of Groups 3.006** 4.037** 6.345**
Overlap Among Groups 0.943** 0.919** 0.901**
Same Feature Owner 0.876** 0.871** 0.852**
GSD 4.501** 2.509** 4.895**
Number of Cross-Feature Dependencies (log) 2.911** 4.938**
Number of Groups X Number of Cross-Feature Dependencies 0.607
GSD X Number of Cross-Feature Dependencies 0.799**
Deviance of the Model 12873.9 9413.1 8043.1
Deviance Explained 33.4% 51.3% 58.4%
(+ p < 0.1; * p < 0.05; ** p < 0.01)

with collinearity, we removed from our analyses all the variables
with variance inflation factor values above 5 as suggested by the
literature [23]. We also performed a pair-wise correlation analysis
among those remaining measures and we did not find any correla-
tions that should be a concern. The highest values were 0.391 and
0.357 between Number of Cross-Feature Dependencies and the
variables Number of Groups and Changed LOCs, respectively.
Table 2 reports the results of our regression analyses examining
the impact of cross-features interactions on integration failures.
Model I presents the odds ratios associated with the control fac-
tors included in our analyses. As expected, the later in the pro-
ject’s lifecycle a feature is integrated (the Time variable), the
lower the probability of integration failures, a result consistent
with learning and development maturity arguments. In addition,
higher Number of Groups involved in the development each pair
of features and having those groups geographically distributed,
increased significantly the likelihood of integration failures to
occur. On the other hand, two organizational factors, the propor-
tion of members of the feature teams that developed a pair of fea-
tures overlapped or belonged to the same formal groups increased
(the Overlap Among Groups variable) and having the same fea-
ture owner for both features in the pair (the Same Feature Owner
variable) had a positive impact of integration failures, reducing
their probability of occurrence. Finally in each pair of features (Fx,
Fy), past failures associated with a feature Fx prior to the integra-
tion of feature Fy was also an important factor leading to integra-
tion failures. As discussed earlier, we computed 10 different ver-
sions of the variables covering a period of 1 week prior to integra-
tion of a feature to 10 weeks prior. We found that the variable
corresponding to the 5-week period worked best in our models.
We think this particular result is related to characteristics of the
project. An analysis of the defects reports stored in the defect
tracking system revealed that the average time to resolve a defect
was 11 days and the standard deviation was 18 days, suggesting
that in most defects were resolved within a 5-week period.

5.3.2 The Impact of Cross-Feature Interactions
Model II introduces the Number of Cross-Feature Dependencies
into the analysis and we observe that its impact is statistically
significant. The higher the Number of Cross-Feature Dependen-
cies a pair of features have, the higher the likelihood of integration
failures to occur. It is also important to highlight that this factor
has a major impact in the explanatory power of the model repre-
senting 17.9% of the deviance explained by the model. This result

suggests that our metric could be a valuable tool for practitioner to
identify where potential coordination problems might occur.

5.3.3 Additional Analyses
We performed additional analyses to examine whether the strong
impact of cross-feature interactions on integration failures was con-
ditional on other factors. As discussed in section 4.3.4, conditional
or moderating effects can be analyzed with interaction terms in a
regression mode. Model III, we introduced two interaction terms of
particular interest: Number of Groups X Number of Cross-Feature
Dependencies and GSD X Number of Cross-Feature Dependen-
cies. Geographic dispersion and higher number of individuals in-
volved in the development are two well-established factors that
increase the coordination complexity of software development en-
deavors. Since model II showed such a strong negative impact on
failures from the Number of Cross-Feature Dependencies, it is
important two understand if such impact changes as the number of
groups involved in the development of a pair of features changes
or whether those groups are geographically distributed or not.

The results reported in model III show only one interaction term,
GSD X Number of Cross-Feature Dependencies, is statistically
significant. The odds ratio associated with the interaction term is
below 1 (0.799) suggesting that the impact of cross-feature depend-
encies is lower when developers of the feature teams are geographi-
cally distributed than when they are collocated. These are unex-
pected results. Figure 2 illustrates the GSD X Number of Cross-
Feature Dependencies interaction effect by depicting the changes
in the estimated probabilities of having integration failures as the
number of cross-feature dependencies changes. As the number of
cross-feature dependencies increases (x axis), we observe that there
is a point (values > 4 in the log-transformed measure on the x axis)
at which the probability of integration failures (y axis) increases
significantly faster when the features teams that worked on a pair of
features are collocated (solid line in figure 2) than when feature
teams are geographically distributed (dashed line in figure 2). It is
important to point out that for levels of the cross-feature dependen-
cies measure below 5.5 (in the log-transformed values of the meas-
ure), the probability of having integration failures is more than dou-
ble for the GSD case than for the collocated case. Such a result is
consistent with the growing body of work showing the detrimental
effects of distribution on quality (e.g. [7, 9]). However, when fea-
tures are very highly interrelated (values > 6), our results show that
the impact of cross-feature dependencies is lower when feature
teams are geographically distributed. One possible explanation for

167

this result is that the work practices developed by collocated teams
might allow them to handle certain levels of interdependence be-
tween features very well. For example, dependencies might be han-
dled more informally because the interdependent engineers are
physically collocated. However, beyond a certain point (e.g. in our
analysis values > 4), those work practices failed to adequately iden-
tify and manage the interdependencies between features. On the
other hand, distributed teams are always at a disadvantage and rec-
ognizing such condition they might develop different work practices
to manage dependencies that help them cope better with high levels
of interdependence.

Figure 2. The Interplay between the Geographic Distribution

of the Feature Teams and Cross-Feature Dependencies.

5.3.4 Assessing the Robustness of the Results
We performed one final analysis to assess the robustness of the
results reported in table 2. Our large dataset is characterized by
having a low proportion of 1s in the outcome variable (an integra-
tion failure associated with a pair of features), which is known as
rare events data [21]. A traditional logistic regression run against
a rare events dataset tends to underestimate the probability of the
outcome [21]. Given that potential problem, we used a strategy to
overcome it as suggested by Hahn and colleagues [18] and, in the
process, evaluate the robustness of our results. The approach is
known as choice-based sampling and consists in strategically
constructing samples from the original dataset based on the values
of the outcome variable. We followed this procedure. First, we
constructed two dataset with a random sample of 50% of the pairs
of features that had integration failures. We then match those pairs
with 5 pairs in one dataset and 10 pairs in the other that had the
outcome variable 0. These pairs were created using features inte-
grated within a week of the matched pair and involved one of the
features in the match pair. We ran the same analyses reported on
table 2 on these two additional datasets. The results were all con-
sistent with the ones reported in table 2, providing additional con-
fidence in our results.

6. DISCUSSION
Feature-driven development is a promising approach. In this pa-
per, we set out to empirically study how technical and organiza-
tional factors impact outcomes in projects that use a feature-
driven development approach in order to further our understand-
ing of its potential. Specifically, we examined the impact that
technical attributes of product features and attributes of the feature
teams that developed such feature have on one particular dimen-

sion of software quality, integration failures. Our results showed
the amount of architectural dependencies contained within a fea-
ture as well as how those dependencies are distributed across
components have an important effect on failures. Specifically,
higher levels of technical coupling and higher concentration of
such coupling in a small set of architectural components signifi-
cantly increase the probability of failures at the time of integrating
a product feature. Most importantly, our analyses revealed that
cross-feature interactions, measured as the number of architectural
dependencies between two product features, are a major driver of
integration failures. We also found that several attributes of the
feature teams impacted quality. The number of engineers involved
in the development of a feature and their geographic dispersion
were detrimental to quality. However, our analyses showed also
that selecting a feature owner that is involved with a highly cou-
pled architectural component that is part of a product feature helps
overcome the detrimental effects that other technical and organi-
zational factors have on the likelihood of integration failures to
occur.

The work reported in this paper has four important contributions
to the software engineering literature, in particular, to the work on
feature-oriented development. First, our results provide one of the
very first empirical evaluations of a feature-oriented development
setting and its implications for software quality. Second, our
analyses explored how the technical and the organizational di-
mensions of feature-oriented development impacted integration
failures as well as how the interplay between both dimensions
impacted such failures. Third, we evaluated an approach to assess
the impact of cross-feature interactions and the results showed
that our measure based on architectural dependency information
was a major driver of integration failures accounting for almost
18% of the deviance in our model. Finally, our results provide
concrete guidance to the practice of feature-oriented development.
We discuss in detail the pragmatic implications in section 6.3.

6.1 Limitations
Our study has several limitations worth highlighting. First, our work
examined a single development organization and a single system
developed by that organization, which raises concerns regarding
external validity. However, the characteristics of the system (e.g.
embedded system developed in a combination of C++, C and as-
sembly programming languages) as well as the processes and work
practices used by the studied organization are similar to those found
in the telecommunication, healthcare, infotainment and automotive
industries. Therefore, we think that our findings are applicable
across a wide spectrum of corporate settings that develop embedded
systems using feature-oriented development approaches.

As discussed in the literature (e.g. [6]), cross-feature interactions
could stem from multiple sources including architectural depend-
encies, logical or semantic dependencies not adequately repre-
sented in architectural descriptions or even from unknown de-
pendencies among different parts of a software system. Our meas-
ure of cross-feature interaction is based on architectural depend-
ency information and captures only a fraction of the possible
cross-feature interactions that might exist in a system representing
a limitation of our analysis. However, the strong impact that our
measure had on the probability of integration failures raises a pair
of interesting questions: how much additional impact might other
types of cross-feature interactions have on failures? And how can
we measure such interactions? We elaborate on these issues fur-
ther in the implications for future research section.

168

Third, the organization we studied did not allow the use of light-
weight collaboration technologies such as instant messaging and
wikis. Past research have found that such technologies help soft-
ware engineers be more aware of the activities that are taking
place in the project and coordinate and collaborate better (e.g. [16,
24, 34]). It is possible that the impact of some of the factors con-
sidered in our analyses were exacerbated by this particular limita-
tion in our research setting. Future research should examine the
impact those collaborative technologies in the context of geo-
graphically distributed feature-driven development.

Finally, the development locations differed in the maturity of the
development practices. All the development locations but the one
in India started to use a feature-oriented development approach at
the same time. The Indian site, on the other hand, was constrained
by their high levels of maturity in their development processes
(CMM level 5). Hence, their adoption of the more fluid develop-
ment practices associated with feature-oriented development was
limited. However, we do not think that such disparity has a major
impact in our results for two reasons. First, the amount of work
done in the Indian site was about 12% of the total development
effort of the project and, second, most of the work was associated
with parts of a feature. Only 17 product features out of the 1195
were completely developed by teams in India.

6.2 Implications for Future Research
The results of our study have important implications for research.
First, our analyses revealed that the measure of cross-feature inter-
action based on architectural dependency information was a major
predictor of integration failures. However, as discussed earlier, such
a measure represents a subset of all potential interactions between
product features that might exist in a system. Past research has
shown that version control data can be used to identify logical de-
pendencies between parts of a software system. Those dependencies
have been found to drive relevant coordination needs among devel-
opers that when satisfied development productivity improves and
probability of software failures to occur is reduced [11]. Then, a
potentially valuable future research path is to explore combining
those two approaches to measure cross-feature interactions, assess
their impact on software quality as well as examine their implica-
tions for evolving software system either by adding more features or
modifying existing ones.

Second, our findings showed an important detrimental impact of
geographic distribution on integration failures. Recent work in the
areas of software quality and distributed development has shown
mixed results. For example, Ramasubbu and Balan [29] found no
evidence that geographic dispersion impacted quality outcomes of
software development projects. Bird and colleagues [3] found that
collocated and distributed teams developed binaries with very simi-
lar levels of quality. In contrast, Cataldo and Nambiar [9, 10] found
that different dimensions of geographic dispersion impacted nega-
tively the quality of architectural components as well as the quality
outcomes of projects. Such disparity in results might be indicative
that the relationship between distributed development and software
quality could be moderated by different technical and organizational
factors that future research should examine.

The relative role of technical and organizational factors associated
with product features suggested by our results point out that future
research in the area of collaborative technologies to support the
development organization could benefit from considering product
features as first order entities. Recently, researchers have argued

that the concept of a product feature could represent the “glue” to
facilitate coordination, collaboration and overall governance of
software development endeavors [8, 32]. Our results provide
guidance on the set of factors and metrics that collaborative tech-
nologies can focus on in order to enhance the coordinative and
collaborative capabilities of software development organizations,
particularly, those that are geographically distributed. For exam-
ple, considering product features as a first order entity, a collabo-
rative tool could collect cross-feature dependency information and
automatically suggests potential interdependent engineers based
on the individuals’ current work activities and the degree of cross-
feature interaction that between the features those individuals are
working on.

Finally, the results of our analyses also call for a more systematic
evaluation of the range of organizational and governance princi-
ples and practices that apply in the context of feature-driven de-
velopment. Our analyses focused on only three aspects: geo-
graphic dispersion, selection of the feature owner and overlap in
feature team membership. Certainly there are several other aspects
that deserve further investigation such as different configurational
properties of geographic dispersion and the integration of feature-
oriented development with agile practices to name a few.

6.3 Practical Implications
Our results also have important practical implications. As software
architecture has become a central element in the development proc-
ess of many software projects, it is quite common to have in early
stages of projects, sufficient information of the software architec-
ture, its constituent elements and their relationships. The strong
impact on integration failures that cross-feature dependencies exhib-
ited in our analyses suggest that software architects, software man-
ager or other stakeholders are now in a position to assess the level of
cross-feature interactions, determine their relative importance and
plan appropriate organizational mechanisms to support the feature
teams involved in developing highly interrelated features.

Second, and in relation to the previous point, the detrimental impact
of technical coupling within a product feature and cross-feature
dependencies is likely to be reduced, our results suggest, by ade-
quately selecting the feature owner. Traditionally, in software de-
velopment as well as in other engineering disciplines, the selection
criteria for technical leadership positions tend to be based on expe-
rience and technical expertise. Certainly, our analyses do not dis-
pute such an approach but they suggest that if such a person is
closely involved with an architectural component part of a product
featured that highly coupled with the rest of the components, such
decision will pay off more in terms of software quality than if such
person is closely involved in the development of any other compo-
nent of the product feature. Then, our findings provide guidance to
software managers and other decision makers of how to best select
feature owners.

7. ACKNOWLEDGEMENTS
We thank the reviewers for their valuable feedback that has
helped improve significantly the study reported here. The authors
are also grateful for the financial support provided by Accenture,
Robert Bosch and IBM that made this research possible.

8. REFERENCES
[1] Austin, R.D. 2001. The Effects of Time Pressure on Quality in

Software Development: An Agency Model. Management Sci-
ence, 12, 2 (Feb. 2001), 195-207.

169

[2] Basili, V.R. and Perricone, B.T. 1994. Software Errors and
Complexity: An Empirical Investigation. Communications of
the ACM, 12 (1994), 42-52.

[3] Bird, C. et al. 2009. Does Distributed Development Affect
Software Quality? An Empirical Case Study of Windows
Vista. In Proceedings of the International Conference on Soft-
ware Engineering (Vancouver, Canada). ICSE’09.

[4] Boh, W.F. et al. 2007. Learning from Experience in Software
Development: A Multilevel Analysis. Management Science,
53, 8 (Aug. 2007), 1315-1331.

[5] Briand, L.C. et al. 2000. Exploring the Relationships between
Design Measures and Software Quality in Object-Oriented
Systems. The J. of Systems and Software, 51 (2000), 245-273.

[6] Calder, M. et al. 2003. Feature Interaction: A Critical Review
and Considered Forecast. Computer Networks, 41 (2003),
115-141.

[7] Cataldo, M. 2010. Sources of Errors in Distributed Devel-
opment Projects: Implications for Collaborative Tools. In
Proceedings of the Conference on Computer Supported Co-
operative Work (Savannah, Georgia). CSCW'10.

[8] Cataldo, M. and Herbsleb, J.D. 2009. End-to-end Features
and Meta-entities for Enabling Coordination in Geographi-
cally Distributed Software Development. In Proceedings of
the 2nd International Workshop on Software Development
Governance (Vancouver, Canada, 2009) SDG’09.

[9] Cataldo, M. and Nambiar, S. 2009. On the Relationship Be-
tween Process Maturity and Geographic Distribution: an
Empirical Analysis of their Impact on Software Quality. In
Proc. of the International Conf. on Foundations on Software
Engineering (Amsterdam, The Netherlands). FSE' 09.

[10] Cataldo, M. and Nambiar, S. 2010. The Impact of Geo-
graphic Distribution and the Nature of Technical Coupling
on the Quality of Global Software Development Projects.
Forthcoming in J. of Softw. Maint. Evol.: Res. and Pract..

[11] Cataldo, M. and Herbsleb, J.D. 2010. Coordination Break-
downs and their Impact of Development Productivity and
Software Failures. Technical Report CMU-ISR-10-104,
School of Computer Science, Carnegie Mellon Univ.

[12] Clements, P. and Northrop, L. 2002. Software Product Lines:
Practices and Patterns. Addison-Wesley, New York, NY.

[13] Curtis, B. 1981. Human Factors in Software Development.
Ed. by Curtis, B., IEEE Computer Society.

[14] Curtis, B., et al. 1988. A field study of software design proc-
ess for large systems. Comm. of the ACM, 31 (1988).

[15] Espinosa, J.A. et al. 2007. Familiarity, Complexity, and Team
Performance in Geographically Distributed Software Devel-
opment. Org. Science, 18, 4 (Aug/Sep. 2007), 613-630

[16] Fitzpatrick, G. et al. 2006. CVS Integration with Notification
and Chat: Lightweight Software Team Collaboration. In Pro-
ceedings of the Conference on Computer Supported Coop-
erative Work (Banff, Canada). CSCW'06.

[17] Graves, T.L. et al. 2000. Predicting Fault Incidence Using
Software Change History, IEEE Transactions on Software En-
gineering, 26 (2000), 653-661.

[18] Hahn, Y. et al. 2008. Emergence of New Project Teams from
Open Source Software Developer Networks: Impact of Prior
Collaboration Ties. Information Systems Research, 19, 3
(Sept. 2008), 269-391.

[19] Harter, D.E. et al. 2000. Effects of Process maturity on Qual-
ity, Cycle Time, and Effort on Software Product Development.
Management Science, 46, 4 (Apr. 2000), 451-466.

[20] Kiczales, G. et al. 1997. Aspect-Oriented Programming. In
Proceedings of the European Conference on Object-Oriented
Programming (Finland). ECOOP’97.

[21] King, G., L. Zeng. 2001. Logistic regression in rare events
data. Political Analysis, 9, 2 (2001), 137-163.

[22] Krishnan, M.S., et al. 2000. An Empirical Analysis of Produc-
tivity and Quality in Software Products. Management Science,
46, 6 (Jun. 2000), 745-759.

[23] Kutner, M. et al. 2004. Applied Linear Regression Models, 4th
Ed., McGraw-Hill Irwin.

[24] Louridas, P. 2006. Using Wikis in Software Development.
IEEE Software, 23 (Mar./Apr 2006).

[25] Moeller, K.H. and Paulish, D. 1993. An Empirical Investiga-
tion of Software Fault Distribution. In Proceedings of the In-
ternational Software Metrics Symposium.

[26] Nagappan, N. and Ball, T. 2007. Using Software Dependen-
cies and Churn Metrics to Predict Field Failures: An Empirical
Case Study. In Proc. of the 1st Int’l Symposium on Empirical
Soft. Eng. and Measurement (Madrid, Spain). ESEM’07.

[27] Palmer, S.R. and Felsing, J.M. 2002. A Practical Guide to
Feature-Driven Development. Prentice-Hall, Upper Saddle
River, NJ.

[28] Prehofer, C. 1997. Feature-Oriented Programming: A Fresh
Look at Objects. Lecture Notes in Computer Science, 1241
(1997), 419-443.

[29] Ramasubbu, N. and Balan, R. K. 2007. Globally Distributed
Software Development Project Performance: An Empirical
Analysis. In Proc. of the 15th Conference on Foundations of
Software Engineering (Dubrovnik, Croatia). FSE’07.

[30] Selby, R.W. and Basili, V.R. 1991. Analyzing Error-Prone
System Structure. IEEE Transactions on Software Engineer-
ing, 17 (1991), 141-152.

[31] Trujillo, S. et al. 2007. Feature-Oriented Model Driven De-
velopment: A Case Study for Portlets. In Proceedings of the
International Conference on Software Engineering (Minnea-
polis, MN). ICSE’07.

[32] Williams, C. et al. 2010. Supporting Enterprise Stakeholders
in Software Projects. In Proceedings of the 3rd International
Workshop on Collaborative and Human Aspects of Software
Engineering (Cape Town, South Africa, 2010). CHASE’10.

[33] Weisband, S. 2008. Leadership at a Distance: Research in
Technologically-Supported Work. Lawrence Erlbaum Asso-
ciates, New York, NY.

[34] Wolf, T. et al. 2009. Predicting Build Failures using Social
Network Analysis on Developer Communication. In Pro-
ceedings of the International Conference on Software Engi-
neering (Vancouver, Canada). ICSE’09.

170

