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ABSTRACT 
Feature-driven software development is a novel approach that has 
grown in popularity over the past decade. Researchers and practi-
tioners alike have argued that numerous benefits could be gar-
nered from adopting a feature-driven development approach. 
However, those persuasive arguments have not been matched with 
supporting empirical evidence. Moreover, developing software 
systems around features involves new technical and organiza-
tional elements that could have significant implications for out-
comes such as software quality. This paper presents an empirical 
analysis of a large-scale project that implemented 1195 features in 
a software system. We examined the impact that technical attrib-
utes of product features, attributes of the feature teams and cross-
feature interactions have on software integration failures. Our 
results show that technical factors such as the nature of compo-
nent dependencies and organizational factors such as the geo-
graphic dispersion of the feature teams and the role of the feature 
owners had complementary impact suggesting their independent 
and important role in terms of software quality. Furthermore, our 
analyses revealed that cross-feature interactions, measured as the 
number of architectural dependencies between two product fea-
tures, are a major driver of integration failures. The research and 
practical implications of our results are discussed. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – process metrics, prod-
uct metrics. D.2.9 [Software Engineering]: Management – life 
cycle, programming teams.  

General Terms 
Management, Measurement, Human Factors. 

Keywords 
Feature-oriented development, cross-feature interaction, global 
software development. 

1. INTRODUCTION 
A product feature is an important concept in software develop-
ment because it conveys attributes of a product relevant to all the 
stakeholders involved in the development process. For example, a 

customer might communicate his/her requirements for a particular 
product as a collection of characteristics or features the product 
ought to have or a software architect might make design decisions 
based on the collection of features that will be part of a product. 
Over the years, researchers and practitioners alike have articulated 
a number of benefits that could be garnered from adopting a fea-
ture-driven development approach.  For instance from a technical 
point of view, past work has argued that feature-driven develop-
ment enhances development flexibility (e.g. [28]), facilitates for-
mal modeling of systems (e.g. [31]) and even leads to higher lev-
els of quality (e.g. [27]). From a process perspective, the concept 
of features is an integral part of the software product lines ap-
proach [12]. Finally from an organizational perspective, research-
ers have argued that features represent very valuable entities that 
can facilitate coordination, collaboration and overall governance 
of software projects [8, 32]. 

Despite the growing popularity and adoption of feature-driven 
software development, we have very limited understanding as to 
how the technical attributes of features impact traditional devel-
opment outcomes such as productivity and quality. Furthermore, 
there are also a number of organizational parameters that are in-
volved in the usage of a feature-driven development approach 
such as configuring feature teams and selecting feature owners. 
The current state of the art on how those organizational aspects of 
feature-oriented development impact outcomes such as develop-
ment productivity or software quality consists mostly of anecdotal 
evidence. 

In this paper, we examine the impact that technical attributes of 
product features, attributes of the feature teams and cross-feature 
interactions have on integration failures. We collected data from a 
large-scale global software development project that implemented 
1195 features over a period of 32 months of activity. Our results 
show that technical and organizational factors have complemen-
tary impact suggesting their independent and important role in 
terms of software quality. In particular, we found that the level of 
technical coupling within features, the concentration of that cou-
pling across architectural components, the geographic distribution 
of feature teams as well as the group membership of feature own-
ers were important factors leading to integration failures. Fur-
thermore, our analyses revealed that cross-feature interactions, 
measured as the number of architectural dependencies between 
two product features, are a major driver of integration failures.  

The rest of the document is organized as follows. We first discuss 
past work and the research questions examined in this paper. 
Then, we describe our research setting, research design and re-
sults. We conclude with a discussion of the contributions, limita-
tions and future research directions. 
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2. INTEGRATION FAILURES IN FEA-
TURE-ORIENTED DEVELOPMENT 
Software quality has been the subject of a large body of past re-
search work, and numerous factors that negatively impact soft-
ware quality have been identified (e.g. [7, 10, 13, 14, 17, 25, 26, 
30, 34]. A distinctive characteristic of that work is the focus on 
particular units of a software system such as files, classes, mod-
ules, components or binaries and how their technical attributes 
and patterns of change impact their quality. Those software enti-
ties represent tangible boundaries that support critical design prin-
ciples such as abstraction, information hiding and, in general, 
modular design. Feature-driven development introduces a distinc-
tive new element, the product feature, which has characteristics 
that differ from what we traditionally consider as a software entity 
(e.g. a file, class, module or component). First, product features, 
like aspects [20] tend to cut across those traditional software enti-
ties. In doing so, they define new technical boundaries which 
might include, for instance, entire components or portions of 
them. Second, those new boundaries tend to create a challenging 
tension between adequately designing and implementing the nec-
essary functionality of the product features and the integrity of the 
architectural components or modules involved or impacted by the 
various product features. Given these differences between features 
and the traditional software entities, it is important to consider 
how the specific technical attributes of features such as the char-
acteristics of architectural dependencies embedded in the feature 
impact software quality. In particular, we are interested in soft-
ware quality outcomes in the context of integrating the various 
parts that constitute a feature, which is a critical process step in 
feature-driven development.  This leads to the following research 
question: 

RQ1a: What is the impact of technical attributes of a 
product feature on failures during the integration of 
that feature? 

It is well established that software development involves not just a 
technical dimension but also a socio-organizational one. For ex-
ample, individual-level experience, either technical or domain-
specific, has been found to be an important factor leading to errors 
and failures in the development of software systems (e.g. [4, 13, 
14]). Configuration aspects of the development teams are also 
another important set of factors that impact important software 
development outcomes such as quality. For instance, the geo-
graphic dispersion of the team members (e.g. [9, 10]), the charac-
teristics of the leaders and manager as well as their leadership 
styles [33], the patterns of interaction on task tracking systems 
[34] as well as the number of individuals involved in the devel-
opment of a piece of software (e.g. [17]) impact software quality. 

A key aspect of feature-driven development is the establishment 
of feature teams to develop the necessary features [27]. Those 
teams tend to be short-lived (just for the duration of developing a 
feature) and individuals tend to be members of multiple feature 
teams. Socio-organizational factors seem likely to play a major 
role in the quality outcomes of feature teams, but given the sub-
stantial differences in development organized around feature 
teams as opposed to traditional teams, it is difficult to know what 
attributes will have important effects.  This leads to the following 
research question: 

RQ1b: What is the impact of organizational attributes 
of the feature team on failures during the integration 
of a product feature? 

The previous paragraphs have considered technical and organiza-
tional factors in the context of a single product feature. However, 
product features do not exist in isolation. They depend or interact 
with other product features. A growing body of work has shown 
that cross-features interactions are a major challenge. Calder and 
colleagues [6] argued that current research challenges include 
understanding where potential interactions arise, how to determine 
that an interaction did in fact occur and how to resolve it. Those 
gaps in the literature lead us to the following research question: 

RQ2: How can we assess cross-feature interactions 
and what is their impact on failures during the inte-
gration of product features? 

3. RESEARCH SETTING 
We collected data from a development organization responsible 
for producing a navigation system for automobiles. Our data cov-
ered 32 months of development activity between 2006 and 2008 
corresponding to the last version of the product. One hundred and 
seventy nine engineers located in 6 development sites distributed 
across North America, Europe and India participated in the pro-
ject. Those developers were organized in 13 development teams. 
Most of the teams involved engineers from at least 2 development 
sites. Telephone, conference calls and email were the primary 
mechanisms of communication among distributed teams and en-
gineers.  The use of lightweight collaboration technologies such as 
instant messaging and wikis was not allowed. The project also had 
daily status meetings organized like scrum meetings. 

The system was composed of about 1.5 million lines of code dis-
tributed in 6,789 source code files and 107 architectural compo-
nents. The development responsibilities of each component were 
assigned to a single development team. The source code files were 
written mostly in C++ but contained a significant amount of code 
written in C and Assembly language. All developers had full ac-
cess to the version control system, the task tracking system and a 
document repository that contained requirements, architectural 
and design specifications.  

The project involved the development of 1,195 product features. 
The organization utilized a feature-oriented development ap-
proach and it started using that approach 5 years prior to the time 
covered by our data. In this project, the software architects and the 
software architecture of the system played an important role in the 
feature-oriented development process. Software architects were 
responsible for analyzing the descriptions of each product feature 
and determining the set of architectural components that would 
have to be altered or enhanced in order to implement the re-
quested feature. The software architects, then, produce a feature 
development specification that contained a description of the work 
to be done in each architectural component. The feature teams 
used those specifications to do the detailed design and implemen-
tation of the feature. Once a feature development specification 
was written, the management of the project defined a feature team 
that would be assigned to that particular product feature. The fea-
ture teams were composed of engineers for the teams responsible 
from the architectural components that were impacted by the fea-
ture as indicated in the feature specification document. Manage-
ment also assigned a feature owner to each product feature. That 
individual was a senior engineer, a group leader or a manager 
from one of the teams involved in the feature team. The organiza-
tion did not have any specific process for selecting feature own-
ers. However, project executives tended to base their selection on 
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experience with the type of product feature and they also tried to 
balance the feature ownership load across all feature owners.  

Once completed, each product feature was delivered to an integra-
tion and testing (I&T) team who was responsible for two activi-
ties. First, they merged the source code of the feature into a pre-
release branch in the version control system. Following that step, 
they ran a collection of integration testing suites that evaluated the 
feature just integrated as well as all the previously integrated fea-
tures. The test suite consisted of a collection of tests defined by 
architects and engineers to evaluate the requirements of each fea-
ture. The I&T team implemented the test suites in two comple-
mentary parts. One part consisted of simple tests (similar in nature 
to a “smoke test”) that were run on the software system using a 
simulator for the real hardware. A second part of the testing in-
cluded the full implementation of the tests and it was executed 
against the software system running on the actual hardware of the 
embedded system. The outcomes of the integration tests were 
recorded and kept as part of the project’s repositories. The I&T 
team recorded for each integration test whether the tests associ-
ated with the recently integrated feature passed or not. They also 
recorded whether the tests associated with features integrated in 
the past passed or not.  

Our empirical analyses are organized in two parts. In section 4, 
we examine research questions 1a and 1b related to technical and 
organizational attributes of features that lead to integration fail-
ures. In section 5, we examine the role of cross-feature interac-
tions on integration failures (RQ2). 

4. WHAT FACTORS DRIVE FAILURES 
WHEN INTEGRATING FEATURES? 
The first step in our investigation was to examine how technical 
attributes of a product feature as well as characteristics of the 
feature teams responsible for developing that product feature im-
pact the occurrence of software failures at the time of integrating 
the product feature. The literature on software failures is vast and 
over the years numerous aspects of a software systems as well as 
aspects of the development process have been linked to failures 
(e.g. [1, 5, 9, 17, 19, 22, 26, 30, 34]). That work guided us in the 
selection of independent variables as well as control factors that 
might impact failures during the integration of features. The rest 
of this section describes in detail the measures and statistical 
models used in our analyses followed by our results. 

4.1 Description of the Measures 
In order to address research questions 1a and 1b, we collected a 
number of measures from various data sources including the pro-
ject’s software repositories and documentation as well as human 
resource records. 

4.1.1 Measuring Integration Failures 
As discussed earlier, the I&T team integrated each feature indi-
vidually. That process allowed the team to run a collection of 
integration tests to evaluate the feature just integrated as well as 
all the previously integrated features. The I&T team recorded for 
each integration test whether the tests associated with the recently 
integrated feature passed or not. They also recorded whether the 
tests associated with previously integrated features passed or not. 
Our outcome measure is a dichotomous variable where a 1 indi-
cates that at least one of the tests performed by the I&T team at 
the time of integrating a feature failed. Otherwise, the variable is 
set to 0. 

4.1.2 Independent Variables 
Our independent measures are organized in two groups. We first 
describe a collection of technical attributes of the features that 
were assessed. The development of each product feature consisted 
of one or more transactions in the version control system that 
impacted one or more architectural components. From those 
transactions, we collected the Changed LOCs, which accounts for 
the number of non-comment non-empty lines of code that were 
added, deleted and modified as part of developing a feature. In 
addition to the amount of change, the locality of those changes 
might be relevant to integration failures. For example, if the ma-
jority of the changes are collocated in the single component in-
volved in a feature, it might be easier to test them and assess their 
potential impact and implications. On the other hand, if the 
changes are dispersed across all the components involved in the 
feature, testing the changes or understanding their potential impli-
cation might be more challenging. In order to reach a better un-
derstanding of how those different patterns of code change within 
a feature might impact integration failures, we computed the Con-
centration of Changed LOCs measure. Building on past work that 
examined the notion of dispersion of software engineers across 
development locations (e.g. [7] and [10]), we evaluated two ap-
proaches for constructing the measure. One approach (based on 
[7]) uses the standard deviation of the changes made to each com-
ponent involved in a feature. Smaller values indicate that the 
changes are relatively evenly distributed among the changed com-
ponents. A second approach builds on entropy-based measures 
(e.g. [10]) to assess the degree of concentration of changes in one 
particular architectural component. Both measures had equivalent 
impact of the results from the regression models. We chose to 
include the measure based on the first approach because the fit of 
the regression models was higher than the fit obtained when using 
the entropy-based approach. 

Technical coupling among constituent parts of a software system 
has consistently been shown to impact software failures (e.g. [5, 9, 
26, 30]). A measure of the extent of the technical coupling within 
each feature was collected from the architectural description of 
the system. The Number of Dependencies variable refers to the 
number of interfaces that the architectural components involved 
within a feature had with each other. In other words, Number of 
Dependencies measures the inter-component coupling within the 
boundaries of a product feature. As in the case of changes in the 
source code, the locality of the technical dependencies within a 
feature might impact failures. Past work in the area of coupling 
and cohesion (e.g. [9, 26, 30]) would suggest that if the inter-
component dependencies within a feature are concentrated in one 
or few components, their high levels of coupling could lead to 
failures. However, a product feature aggregates those different 
patterns of technical coupling, therefore it is unclear how they 
might impact failures when considering features as the unit of 
analyses rather than architectural components. In order to shed 
light on the relationship between technical coupling and product 
features, we computed the Concentration of Dependencies vari-
able as the standard deviation of the number of dependencies 
among all possible pairs of components involved in a feature.  
Smaller values indicate that the dependencies are relatively evenly 
distributed among the components involved in a product feature. 
As indicated in the previous paragraph, this approach of construct-
ing the measure proved to be a better measure than other ap-
proaches (e.g. an entropy-based measure) for the statistical models 
used in our analyses. 
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In a second set of measures we assessed organizational properties 
of the feature teams involved in the development of a feature. 
GSD is a dichotomous variable where 1 indicates that the feature 
team members were located in different development sites; other-
wise it is set to 0. It is worth pointing out that all the project mem-
bers that were collocated work in a single open space in individual 
cubicles. We also measured the Number of Developers that were 
part of the feature teams. As discussed earlier, feature team mem-
bers were selected from formal groups responsible for the various 
architectural components. Therefore, we also measured the Num-
ber of Groups involved in the development of each feature. Fi-
nally, we constructed two measures that assess the relationship 
between the organizational and the technical dimensions of devel-
oping a product feature. The feature owner has an important role 
within the development effort associated with a feature because it 
is the individual responsible for making sure the feature team is 
able to accomplish its goal of developing the feature. In our re-
search setting, feature owners were selected from among the 
members of the groups responsible for the components being 
affected by a product feature suggesting that feature owners might 
have particular sets of skills, experiences and relationships that 
might benefit certain members of a feature team and hinder oth-
ers. Therefore, we computed the Feature Owner Belongs to 
Highly Coupled Component measure as a dichotomous variable, 
which is set to 1 if the feature owner belonged to the group re-
sponsible for the component with the highest number of technical 
dependencies within the assigned feature. Similarly, we computed 
the measure Feature Owner Belongs to Highly Changed Compo-
nent, which is set to 1 if the feature owner belonged to the group 
responsible for the component that was changed the most as part 
of the development of the focal feature. 

4.1.3 Additional Control Factors 
We collected a number of additional measures that past research 
has shown to be related to software quality and, consequently, 
relevant to modeling integration failures [2, 5, 17, 26, 30]. For 
each product feature, we collected the Number of Modification 
Requests as reported in the modification request (MR) tracking 
system associated with each feature. We also collected the Total 
Size in LOCs of the components that were involved in a feature. It 
is well established that over time development organizations learn 
and mature their processes and practices and consequently, tend to 
reduce mistakes and errors. Therefore, we computed the variable 
Time that represents the week within the project on which the 
feature was integrated. 

Finally, we collected measures of experience based on the ap-
proaches used by Boh and colleagues [4] and Espinosa and col-
leagues [15], which utilize the data in software repositories as the 
basis for assessing experience. We measured prior experience on 
the product in two different ways. Average MR Experience as-
sessed the average number of MR that the feature team member 
worked on prior to the focal feature. Average Component Experi-
ence measured the average number of times that the feature team 
members modified the architectural components associated with 
the focal feature prior to the beginning of the development of the 
feature.  

4.2 Description of the Model 
Our dependent measure is a dichotomous variable. Consequently, 
we used logistic regression models to examine research questions 
1a and 1b. We followed a traditional hierarchical approach where 
we start our analyses with a baseline model that contains only 

control factors. In subsequent models, we added the various inde-
pendent measures associated with the different research questions. 
This modeling approach allows us to understand the independent 
and relative impact on integration failures of each set of factors.  

In order to assess the fit of each model, we report the deviance of 
each model as well as the percentage of deviance explained by the 
model. The deviance of a model is defined as “-2 * log-likelihood 
of the model” and lower values are associated with better fit of the 
model to the data. The percentage of the deviance explained is a 
ratio of the deviance of the null model (contains only the inter-
cept) and the deviance of the final model. In order to simplify the 
interpretation of the results, we report the odds ratios associated 
with each measure instead of reporting the regression coefficients. 
Odds ratios larger than 1 indicate a positive relationship between 
the independent and dependent variables whereas an odds ratio 
less than 1 indicates a negative relationship.  

4.3 Results 
4.3.1 Preliminary Analyses 
The first step in our analysis consisted in examining various de-
scriptive statistics of the measures described earlier. Several vari-
ables had skewed distributions so they were log-transformed. In 
the next step, we performed various collinearity diagnostics. A 
variance inflation factors (VIF) analysis revealed that several of 
the measures were highly collinear. In accordance with well-
established recommendations, we removed from our analyses all 
the variables with VIF values above 5 [23]. A pair-wise correla-
tion analysis among those remaining measures showed levels of 
correlation that were not problematic with the highest values be-
ing 0.359 and 0.258 between Changed LOCs and Number of De-
pendencies and Time, respectively. 

Table 1 reports the results of our regression analyses examining 
the impact on integration failures of various technical and organi-
zational factors. Model I reports the odds ratios associated with 
the control factors included in our analyses. As expected, Time 
and higher levels of Average Component Experiences are associ-
ated with lower probability of failures. For instance, an additional 
week in the development project corresponding to a unit increase 
in the variable Time reduces the likelihood of failure (odds ratio 
equal to 0.992 – lower than 1) by 0.8% considering all other fac-
tors constant. 

4.3.2 The Impact of Technical Attributes of Features 
We examined research question 1a with model II in table 1. The 
model includes the technical attributes of the feature to study their 
impact on integration failures. Our results do not provide evidence 
that either the amount of source code changed (Changed LOCs) 
during the development of the feature or the concentration of 
those changes across the various architectural components af-
fected by those changes (Concentration of Changed LOCs) im-
pacted the likelihood of integration failures. On the other hand, 
the level of technical coupling (Number of Dependencies) among 
the components involved in the feature and the degree of concen-
tration of that coupling (Concentration of Number of Dependen-
cies) do have a statistically significant effect on integration fail-
ures. We observe that the higher the number of architectural de-
pendencies among the components that are impacted by a feature, 
the higher the likelihood of failures (odds ratio > 1). Moreover, 
the higher the concentration of the coupling in a smaller number 
of components is, the higher is the likelihood of integration fail-
ures.  
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Table 1. Odds Ratios from Regression Assessing Factors Driving Feature Integration Failures  

 Model I Model II Model III Model IV 
Time  0.992*  0.990*  0.990*  0.989* 
Average Component Experience (log)  0.487*  0.984+  0.741+  0.754 
Changed LOCs   1.021  1.089  1.063 
Concentration of Changed LOCs   1.045  1.028  1.036 
Number of Dependencies (log)   1.107*  1.091*  1.091* 
Concentration of Number of Dependencies   1.032**  1.046**  1.078** 
Number of Groups    1.101*  1.051* 
GSD   13.924** 14.964** 
Feature Owner Belongs to Highly Changed Component      0.789   0.396 
Feature Owner Belongs to Highly Coupled Component      0.839**   0.819** 
Concentration of Changed LOCs X F. Owner Belongs to Highly Changed Component      1.032 
Concentration of Number of Dependencies X F. Owner Belongs to Highly Coupled Comp.      0.977** 
GSD X Feature Owner Belongs to Highly Changed Component      3.736 
GSD X Feature Owner Belongs to Highly Coupled Component      0.926 
Deviance of the Model 755.2 639.0 458.4 412.2 
Deviance Explained 11.7% 25.3% 46.4% 51.8% 
(+ p < 0.1; * p < 0.05; ** p < 0.01)     

4.3.3 The Impact of Organizational Attributes of 
Feature Teams 
In model III, we examined the role that organizational attributes 
of the feature teams have on integration failures (RQ1b). We ob-
serve that several organizational factors have a statistically sig-
nificant impact on integration failures. As the number of devel-
opment groups that work on a feature increases, so does the prob-
ability of occurrence of integration failures. In addition, geo-
graphic dispersion of the feature team has a major impact of inte-
gration failures. When the engineers that worked on the feature 
were geographically distributed, the likelihood of integration fail-
ures is almost 14 times higher than when all engineers are in the 
same location (odds ratio = 13.924). We also examined how the 
group membership of the feature owner impacted the outcome of 
the feature teams. We found that selecting the feature owner from 
the group that is responsible for the architectural component with 
the highest level of technical coupling within the product feature 
helps reduce the probability of integration failures to occur. Spe-
cifically, having the feature owner belong to the group responsible 
for the highest coupled component decreases the likelihood of 
failures by about 20% (odds ratio=0.839) compared to not having 
the feature owner belong to that development group. 

Models II and III provide insight on the relative impact on failures 
of the technical attributes of product features and organizational 
characteristics of feature teams. Organizational attributes explain 
21.1% of the deviance in the data (the difference in the deviance 
explained between model II and III) whereas technical attributes 
of feature explained 13.6% of the deviance. Those results high-
light the significant impact that the characteristics of feature teams 
have on the outcomes of feature-driven development endeavors 

4.3.4 Additional Analyses 
We performed additional analyses to examine the potential condi-
tional impact of particular factors such as which group the feature 
owner belonged to and the geographic dispersion of the feature 
team. The conditional impact of the variables can be studied with 
interaction terms in a regression model. An interaction between two 
factors, for instance, GSD and Feature Owner Belongs to Highly 
Coupled Component, allows us to examine how the impact of one 
factor (e.g. Feature Owner Belongs to Highly Coupled Compo-

nent) on the dependent variable changes for different values of the 
second factor (e.g. feature team is collocated or not). 

In model III, we found that the group to which the feature owner 
belongs is an important organizational factor in the context of inte-
gration failures. However, the impact of such factor might differ 
depending whether the feature team members are geographically 
distributed or not. In addition, the level of concentration in the 
changes to the code or in the technical coupling among components 
might moderate the impact of having the feature owner belonging to 
a particular group. For example, it might be only beneficial to have 
the feature owner belong to the group that is responsible for the 
component with the highest amount of changes or dependencies 
only when the concentration levels are relatively high. In order to 
explore those potential conditional effects, model IV of table 1 in-
cludes several interaction terms that were selected based on the 
results reported in models II and III. All independent variables were 
mean-centered, an approach traditionally used to address the collin-
earity issues introduced by the interaction terms.  

 
Figure 1: The Interplay between the Concentration of Techni-
cal Coupling within a Feature and the Feature Owner Belong-

ing to the Highly Coupled Component. 
The results reported in model IV show only one interaction term, 
Concentration of Number of Dependencies X Feature Owner 
Belongs to Highly Coupled Component, is statistically significant 
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suggesting that the impact of the concentration of the technical cou-
pling within a feature is moderated by whether the feature owner 
belongs to the group responsible for the highly coupled components 
or not. An odds ratio below 1 indicates that when the feature owner 
belongs to the group responsible for the highest coupled component, 
the negative impact of higher levels of concentration of the techni-
cal coupling is reduced. Figure 1 illustrates this point by depicting 
how the probabilities of integration failure estimated by our logistic 
regression models change as the number of dependencies changes. 
As the concentration of the number of dependencies increases (x 
axis), we observe that the estimated probability of failure (y axis) 
increases faster when the feature owner does not belong to the 
group responsible for the component with the highest level of cou-
pling (solid line in figure 1) than when the feature owner belongs to 
the group responsible for the component with the highest level of 
coupling (dashed line in figure 1). In fact, the probability of failure 
reduces by half in the latter case where the number of dependencies 
is higher than 40. Furthermore, we see that this relationship inverts 
for lower values of concentration in the number of dependencies 
(values < 20). 

5. CROSS-FEATURE INTERACTIONS 
AND INTEGRATION FAILURES 
We now turn our attention to cross-feature interactions and their 
implication for integration of features. In particular, we examine 
how architectural dependencies that represent relationships be-
tween product features impact the occurrence of integration fail-
ures in a feature-driven development setting. The rest of the sec-
tion describes in detail the measures and statistical models used in 
our analyses as well as the results of our investigations. 

5.1 Description of the Measures 
In order to address research question 2, we collected a number of 
measures from various data sources including the project’s soft-
ware repositories, documentation and human resource records. 

5.1.1 Measuring Integration Failures 
In this case, our unit of analysis is the pair of product features. As 
described in section 3, product features were integrated into a pre-
release development stream individually. Then, the I&T team ran 
a collection of integration tests every time a feature was inte-
grated. Using such information, we constructed our dataset of 
pairs of features in the following way. When a feature Fn was 
integrated, we created n-1 pairs (F1, Fn) … (Fn-1, Fn). Considering 
all 1,195 features developed in the project and integrated, we had 
a total of 713,416 possible pairs of features. Our dependent meas-
ures is a dichotomous variable where a 1 associated with a pair of 
features (Fx, Fy) indicates that the integration tests associated with 
either features Fx or Fy failed at the time of integrating feature Fy 
(assuming that feature Fy was integrated after feature Fx).  

5.1.2 Measuring Cross-Features Interactions 
We measured the Number of Cross-Features Dependencies for a 
pair of features (Fx, Fy) as the number of architectural dependen-
cies that the components involved in feature Fx had with the com-
ponents involved in feature Fy. The data about architectural de-
pendencies were extracted from the project’s software architecture 
documentation that contained detailed descriptions of all 107 ar-
chitectural components and their relationships. 

5.1.3 Additional Control Factors 
We collected a number of additional measures for each pair of 
features. Since our unit of analysis is the pair of features, integra-

tion failures could be impacted by a buggy feature that was inte-
grated in the past rather than by the feature being integrated. In 
order to control for this effect, we constructed dichotomous vari-
ables, Past Failures in the Past X Weeks. These variables meas-
ured the impact of past failures associated with the features that 
were integrated in the past – feature Fx in a given pair (Fx, Fy) – 
when integrating a new feature Fy. We considered 1 to 10 weeks 
time periods. For example, the variable Past Failures in the Past 5 
Weeks would be set to 1 for the pair of features  (Fx, Fy) if there 
has been an integration testing failure associated with Fx in the 
past 5 weeks prior to integrating feature Fy. We measured the 
Changed LOCs as the number of non-comment non-empty lines 
of code that were added, deleted and modified as part of develop-
ing both features in each pair. The measure Number of Modifica-
tion Requests captured the number of MRs associated with each 
pair of features as reported in the MR tracking system. It is well 
established that over time development organizations learn and 
mature their processes and practices and consequently, tend to 
reduce mistakes and errors. Therefore, we computed the variable 
Time for each pair of features (Fx, Fy) that represents the week 
within the project on which the feature Fy was integrated. 

We also assessed a set of organizational properties of the feature 
teams involved in the development of each pair of features. GSD 
is a dichotomous variable where 1 indicates that the members of 
either feature teams involved in the development of the features in 
a given pair (Fx, Fy) were located in different development sites; 
otherwise it is set to 0. As indicated earlier, all the project mem-
bers that were collocated work in a single open space in individual 
cubicles. We also measure the Number of Groups involved in the 
development of each pair of features as well as the Number of 
Developers that were part of those feature teams. The engineers 
involved in the development of a pair of features that belong to 
the same formal groups responsible for certain architectural com-
ponents might have more opportunities to interact, communicate 
and coordinate than if they belong to different formal teams. 
Then, we computed the Overlap Among Groups as the proportion 
of feature team members from Fx that belong to the same set of 
formal groups that the members of the feature team associated 
with Fy. We also computed the Same Feature Owner measure as a 
dichotomous variable set to 1 if the same individual was the fea-
ture owner for the pair of features; otherwise the measure was set 
to 0. Finally, we collected measures of experience based on the 
approaches used by Boh and colleagues [4] and Espinosa and 
colleagues [15]. We measured prior experience on the product in 
two different ways. Average MR Experience measures the average 
number of MR that the feature teams’ members associated with a 
pair of features worked on prior to the focal feature. Average 
Component Experience represents the average number of times 
that the feature teams’ members modified the components associ-
ated with each pair of features. 

5.2 Description of the Model 
As in the case of the analyses reported in the previous section, our 
dependent measure is also dichotomous variable. Consequently, 
we followed the same modeling strategy (the use of logistic re-
gression models) described in section 4.2.  

5.3 Results 
5.3.1 Preliminary Analysis 
We performed preliminary analysis similar to those described in 
section 4.3.1. In order to  reduce  estimation  problems  associated  
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Table 2. Odds Ratios from Regression Assessing the Impact of Cross-Feature Interactions on Integration Failures 

 Model I Model II Model II 
Time  0.981**  0.971**  0.964* 
Failures in the Past 5 Weeks  2.127**  1.125*  1.011* 
Changed LOCs  1.371**  1.201**  1.203** 
Average Component Experience (log)  0.837+  0.997  0.908 
Number of Groups  3.006**  4.037**  6.345** 
Overlap Among Groups  0.943**  0.919**  0.901** 
Same Feature Owner  0.876**  0.871**  0.852** 
GSD  4.501**  2.509**  4.895** 
Number of Cross-Feature Dependencies (log)   2.911**  4.938** 
Number of Groups X Number of Cross-Feature Dependencies    0.607 
GSD X Number of Cross-Feature Dependencies    0.799** 
Deviance of the Model 12873.9 9413.1 8043.1 
Deviance Explained 33.4% 51.3% 58.4% 
(+ p < 0.1; * p < 0.05; ** p < 0.01)    

with collinearity, we removed from our analyses all the variables 
with variance inflation factor values  above 5  as suggested  by the 
literature [23]. We also performed a pair-wise correlation analysis 
among those remaining measures and we did not find any correla-
tions that should be a concern. The highest values were 0.391 and 
0.357 between Number of Cross-Feature Dependencies and the 
variables Number of Groups and Changed LOCs, respectively. 
Table 2 reports the results of our regression analyses examining 
the impact of cross-features interactions on integration failures. 
Model I presents the odds ratios associated with the control fac-
tors included in our analyses. As expected, the later in the pro-
ject’s lifecycle a feature is integrated (the Time variable), the 
lower the probability of integration failures, a result consistent 
with learning and development maturity arguments. In addition, 
higher Number of Groups involved in the development each pair 
of features and having those groups geographically distributed, 
increased significantly the likelihood of integration failures to 
occur. On the other hand, two organizational factors, the propor-
tion of members of the feature teams that developed a pair of fea-
tures overlapped or belonged to the same formal groups increased 
(the Overlap Among Groups variable) and having the same fea-
ture owner for both features in the pair (the Same Feature Owner 
variable) had a positive impact of integration failures, reducing 
their probability of occurrence. Finally in each pair of features (Fx, 
Fy), past failures associated with a feature Fx prior to the integra-
tion of feature Fy was also an important factor leading to integra-
tion failures. As discussed earlier, we computed 10 different ver-
sions of the variables covering a period of 1 week prior to integra-
tion of a feature to 10 weeks prior. We found that the variable 
corresponding to the 5-week period worked best in our models. 
We think this particular result is related to characteristics of the 
project. An analysis of the defects reports stored in the defect 
tracking system revealed that the average time to resolve a defect 
was 11 days and the standard deviation was 18 days, suggesting 
that in most defects were resolved within a 5-week period.  

5.3.2 The Impact of Cross-Feature Interactions 
Model II introduces the Number of Cross-Feature Dependencies 
into the analysis and we observe that its impact is statistically 
significant. The higher the Number of Cross-Feature Dependen-
cies a pair of features have, the higher the likelihood of integration 
failures to occur. It is also important to highlight that this factor 
has a major impact in the explanatory power of the model repre-
senting 17.9% of the deviance explained by the model. This result 

suggests that our metric could be a valuable tool for practitioner to 
identify where potential coordination problems might occur. 

5.3.3 Additional Analyses 
We performed additional analyses to examine whether the strong 
impact of cross-feature interactions on integration failures was con-
ditional on other factors. As discussed in section 4.3.4, conditional 
or moderating effects can be analyzed with interaction terms in a 
regression mode. Model III, we introduced two interaction terms of 
particular interest: Number of Groups X Number of Cross-Feature 
Dependencies and GSD X Number of Cross-Feature Dependen-
cies. Geographic dispersion and higher number of individuals in-
volved in the development are two well-established factors that 
increase the coordination complexity of software development en-
deavors. Since model II showed such a strong negative impact on 
failures from the Number of Cross-Feature Dependencies, it is 
important two understand if such impact changes as the number of 
groups involved in the development of a pair of features changes 
or whether those groups are geographically distributed or not. 

The results reported in model III show only one interaction term, 
GSD X Number of Cross-Feature Dependencies, is statistically 
significant. The odds ratio associated with the interaction term is 
below 1 (0.799) suggesting that the impact of cross-feature depend-
encies is lower when developers of the feature teams are geographi-
cally distributed than when they are collocated. These are unex-
pected results. Figure 2 illustrates the GSD X Number of Cross-
Feature Dependencies interaction effect by depicting the changes 
in the estimated probabilities of having integration failures as the 
number of cross-feature dependencies changes. As the number of 
cross-feature dependencies increases (x axis), we observe that there 
is a point (values > 4 in the log-transformed measure on the x axis) 
at which the probability of integration failures (y axis) increases 
significantly faster when the features teams that worked on a pair of 
features are collocated (solid line in figure 2) than when feature 
teams are geographically distributed (dashed line in figure 2). It is 
important to point out that for levels of the cross-feature dependen-
cies measure below 5.5 (in the log-transformed values of the meas-
ure), the probability of having integration failures is more than dou-
ble for the GSD case than for the collocated case. Such a result is 
consistent with the growing body of work showing the detrimental 
effects of distribution on quality (e.g. [7, 9]). However, when fea-
tures are very highly interrelated (values > 6), our results show that 
the impact of cross-feature dependencies is lower when feature 
teams are geographically distributed. One possible explanation for 
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this result is that the work practices developed by collocated teams 
might allow them to handle certain levels of interdependence be-
tween features very well. For example, dependencies might be han-
dled more informally because the interdependent engineers are 
physically collocated. However, beyond a certain point (e.g. in our 
analysis values > 4), those work practices failed to adequately iden-
tify and manage the interdependencies between features. On the 
other hand, distributed teams are always at a disadvantage and rec-
ognizing such condition they might develop different work practices 
to manage dependencies that help them cope better with high levels 
of interdependence. 

 
Figure 2. The Interplay between the Geographic Distribution 

of the Feature Teams and Cross-Feature Dependencies. 

5.3.4 Assessing the Robustness of the Results 
We performed one final analysis to assess the robustness of the 
results reported in table 2. Our large dataset is characterized by 
having a low proportion of 1s in the outcome variable (an integra-
tion failure associated with a pair of features), which is known as 
rare events data [21]. A traditional logistic regression run against 
a rare events dataset tends to underestimate the probability of the 
outcome [21]. Given that potential problem, we used a strategy to 
overcome it as suggested by Hahn and colleagues [18] and, in the 
process, evaluate the robustness of our results. The approach is 
known as choice-based sampling and consists in strategically 
constructing samples from the original dataset based on the values 
of the outcome variable. We followed this procedure. First, we 
constructed two dataset with a random sample of 50% of the pairs 
of features that had integration failures. We then match those pairs 
with 5 pairs in one dataset and 10 pairs in the other that had the 
outcome variable 0. These pairs were created using features inte-
grated within a week of the matched pair and involved one of the 
features in the match pair. We ran the same analyses reported on 
table 2 on these two additional datasets. The results were all con-
sistent with the ones reported in table 2, providing additional con-
fidence in our results. 

6. DISCUSSION 
Feature-driven development is a promising approach. In this pa-
per, we set out to empirically study how technical and organiza-
tional factors impact outcomes in projects that use a feature-
driven development approach in order to further our understand-
ing of its potential. Specifically, we examined the impact that 
technical attributes of product features and attributes of the feature 
teams that developed such feature have on one particular dimen-

sion of software quality, integration failures. Our results showed 
the amount of architectural dependencies contained within a fea-
ture as well as how those dependencies are distributed across 
components have an important effect on failures. Specifically, 
higher levels of technical coupling and higher concentration of 
such coupling in a small set of architectural components signifi-
cantly increase the probability of failures at the time of integrating 
a product feature. Most importantly, our analyses revealed that 
cross-feature interactions, measured as the number of architectural 
dependencies between two product features, are a major driver of 
integration failures. We also found that several attributes of the 
feature teams impacted quality. The number of engineers involved 
in the development of a feature and their geographic dispersion 
were detrimental to quality. However, our analyses showed also 
that selecting a feature owner that is involved with a highly cou-
pled architectural component that is part of a product feature helps 
overcome the detrimental effects that other technical and organi-
zational factors have on the likelihood of integration failures to 
occur. 

The work reported in this paper has four important contributions 
to the software engineering literature, in particular, to the work on 
feature-oriented development. First, our results provide one of the 
very first empirical evaluations of a feature-oriented development 
setting and its implications for software quality. Second, our 
analyses explored how the technical and the organizational di-
mensions of feature-oriented development impacted integration 
failures as well as how the interplay between both dimensions 
impacted such failures. Third, we evaluated an approach to assess 
the impact of cross-feature interactions and the results showed 
that our measure based on architectural dependency information 
was a major driver of integration failures accounting for almost 
18% of the deviance in our model. Finally, our results provide 
concrete guidance to the practice of feature-oriented development. 
We discuss in detail the pragmatic implications in section 6.3. 

6.1 Limitations 
Our study has several limitations worth highlighting. First, our work 
examined a single development organization and a single system 
developed by that organization, which raises concerns regarding 
external validity. However, the characteristics of the system (e.g. 
embedded system developed in a combination of C++, C and as-
sembly programming languages) as well as the processes and work 
practices used by the studied organization are similar to those found 
in the telecommunication, healthcare, infotainment and automotive 
industries. Therefore, we think that our findings are applicable 
across a wide spectrum of corporate settings that develop embedded 
systems using feature-oriented development approaches. 

As discussed in the literature (e.g. [6]), cross-feature interactions 
could stem from multiple sources including architectural depend-
encies, logical or semantic dependencies not adequately repre-
sented in architectural descriptions or even from unknown de-
pendencies among different parts of a software system. Our meas-
ure of cross-feature interaction is based on architectural depend-
ency information and captures only a fraction of the possible 
cross-feature interactions that might exist in a system representing 
a limitation of our analysis. However, the strong impact that our 
measure had on the probability of integration failures raises a pair 
of interesting questions: how much additional impact might other 
types of cross-feature interactions have on failures? And how can 
we measure such interactions? We elaborate on these issues fur-
ther in the implications for future research section. 
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Third, the organization we studied did not allow the use of light-
weight collaboration technologies such as instant messaging and 
wikis. Past research have found that such technologies help soft-
ware engineers be more aware of the activities that are taking 
place in the project and coordinate and collaborate better (e.g. [16, 
24, 34]). It is possible that the impact of some of the factors con-
sidered in our analyses were exacerbated by this particular limita-
tion in our research setting. Future research should examine the 
impact those collaborative technologies in the context of geo-
graphically distributed feature-driven development. 

Finally, the development locations differed in the maturity of the 
development practices. All the development locations but the one 
in India started to use a feature-oriented development approach at 
the same time. The Indian site, on the other hand, was constrained 
by their high levels of maturity in their development processes 
(CMM level 5). Hence, their adoption of the more fluid develop-
ment practices associated with feature-oriented development was 
limited. However, we do not think that such disparity has a major 
impact in our results for two reasons. First, the amount of work 
done in the Indian site was about 12% of the total development 
effort of the project and, second, most of the work was associated 
with parts of a feature. Only 17 product features out of the 1195 
were completely developed by teams in India.  

6.2 Implications for Future Research  
The results of our study have important implications for research. 
First, our analyses revealed that the measure of cross-feature inter-
action based on architectural dependency information was a major 
predictor of integration failures. However, as discussed earlier, such 
a measure represents a subset of all potential interactions between 
product features that might exist in a system. Past research has 
shown that version control data can be used to identify logical de-
pendencies between parts of a software system. Those dependencies 
have been found to drive relevant coordination needs among devel-
opers that when satisfied development productivity improves and 
probability of software failures to occur is reduced [11]. Then, a 
potentially valuable future research path is to explore combining 
those two approaches to measure cross-feature interactions, assess 
their impact on software quality as well as examine their implica-
tions for evolving software system either by adding more features or 
modifying existing ones. 

Second, our findings showed an important detrimental impact of 
geographic distribution on integration failures. Recent work in the 
areas of software quality and distributed development has shown 
mixed results. For example, Ramasubbu and Balan [29] found no 
evidence that geographic dispersion impacted quality outcomes of 
software development projects. Bird and colleagues [3] found that 
collocated and distributed teams developed binaries with very simi-
lar levels of quality. In contrast, Cataldo and Nambiar [9, 10] found 
that different dimensions of geographic dispersion impacted nega-
tively the quality of architectural components as well as the quality 
outcomes of projects. Such disparity in results might be indicative 
that the relationship between distributed development and software 
quality could be moderated by different technical and organizational 
factors that future research should examine. 

The relative role of technical and organizational factors associated 
with product features suggested by our results point out that future 
research in the area of collaborative technologies to support the 
development organization could benefit from considering product 
features as first order entities. Recently, researchers have argued 

that the concept of a product feature could represent the “glue” to 
facilitate coordination, collaboration and overall governance of 
software development endeavors [8, 32]. Our results provide 
guidance on the set of factors and metrics that collaborative tech-
nologies can focus on in order to enhance the coordinative and 
collaborative capabilities of software development organizations, 
particularly, those that are geographically distributed. For exam-
ple, considering product features as a first order entity, a collabo-
rative tool could collect cross-feature dependency information and 
automatically suggests potential interdependent engineers based 
on the individuals’ current work activities and the degree of cross-
feature interaction that between the features those individuals are 
working on.  

Finally, the results of our analyses also call for a more systematic 
evaluation of the range of organizational and governance princi-
ples and practices that apply in the context of feature-driven de-
velopment. Our analyses focused on only three aspects: geo-
graphic dispersion, selection of the feature owner and overlap in 
feature team membership. Certainly there are several other aspects 
that deserve further investigation such as different configurational 
properties of geographic dispersion and the integration of feature-
oriented development with agile practices to name a few. 

6.3 Practical Implications  
Our results also have important practical implications. As software 
architecture has become a central element in the development proc-
ess of many software projects, it is quite common to have in early 
stages of projects, sufficient information of the software architec-
ture, its constituent elements and their relationships. The strong 
impact on integration failures that cross-feature dependencies exhib-
ited in our analyses suggest that software architects, software man-
ager or other stakeholders are now in a position to assess the level of 
cross-feature interactions, determine their relative importance and 
plan appropriate organizational mechanisms to support the feature 
teams involved in developing highly interrelated features.  

Second, and in relation to the previous point, the detrimental impact 
of technical coupling within a product feature and cross-feature 
dependencies is likely to be reduced, our results suggest, by ade-
quately selecting the feature owner. Traditionally, in software de-
velopment as well as in other engineering disciplines, the selection 
criteria for technical leadership positions tend to be based on expe-
rience and technical expertise. Certainly, our analyses do not dis-
pute such an approach but they suggest that if such a person is 
closely involved with an architectural component part of a product 
featured that highly coupled with the rest of the components, such 
decision will pay off more in terms of software quality than if such 
person is closely involved in the development of any other compo-
nent of the product feature. Then, our findings provide guidance to 
software managers and other decision makers of how to best select 
feature owners.  
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