
Software Dependencies, Work Dependencies,
and Their Impact on Failures

Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, and James D. Herbsleb

Abstract—Prior research has shown that customer-reported software faults are often the result of violated dependencies that are not

recognized by developers implementing software. Many types of dependencies and corresponding measures have been proposed to

help address this problem. The objective of this research is to compare the relative performance of several of these dependency

measures as they relate to customer-reported defects. Our analysis is based on data collected from two projects from two independent

companies. Combined, our data set encompasses eight years of development activity involving 154 developers. The principal

contribution of this study is the examination of the relative impact that syntactic, logical, and work dependencies have on the failure

proneness of a software system. While all dependencies increase the fault proneness, the logical dependencies explained most of the

variance in fault proneness, while workflow dependencies had more impact than syntactic dependencies. These results suggest that

practices such as rearchitecting, guided by the network structure of logical dependencies, hold promise for reducing defects.

Index Terms—Distribution/maintenance/enhancement, metrics/measurement, organizational management and coordination, quality

analysis and evaluation.

Ç

1 INTRODUCTION

IT has long been established that many software faults are
caused by violated dependencies that are not recognized

by developers designing and implementing a software
system [12], [26]. The failure to recognize these dependen-
cies could stem from technical properties of the dependen-
cies themselves as well as from the way development work
is organized. In other words, two dimensions are at play—
technical and organizational.

On the technical side, the software engineering literature
has long recognized call and dataflow syntactic relationships
as an important source of error [4], [29], [40]. Research in the
software evolution literature has introduced a new view on
technical dependencies among software modules. Gall et al.
[21] introduced the idea of “logical” coupling (or depen-
dencies) by showing that source-code files that are changed
together can uncover dependencies among those files that
are not explicitly identified by traditional syntactic ap-
proaches. Past work has also examined aspects of the
relationship between logical dependencies and failures in
software systems. Eick et al. [15] used increases of such
logical coupling as an indicator of “code decay.” Graves et al.

[23] showed that past changes are good predictors of future
faults, and Mockus and Weiss [32] found that the spread of a
change over subsystems and files is a strong indicator that
the change will contain a defect.

Human and organizational factors can also strongly affect
how dependencies are handled, potentially affecting the
quality of a software system. Research has shown that the
level of interdependency between tasks tends to increase the
level of communication and coordination activities among
workers [20], [46]. Recent studies suggest, however, that the
identification and management of technical dependencies is
a challenge in software development organizations, parti-
cularly when those dependencies are semantic rather than
syntactic [7], [12], [24], [27]. Appropriate levels of commu-
nication and coordination may not occur, potentially
decreasing the quality of a system [11], [26]. Consequently,
it is important to understand how work dependencies (i.e.,
the way dependencies are manifested in development tasks)
impact failure proneness.

In contrast with research on fault prediction models [35],
[36], [48], our work focuses on evaluating several potential
causes of defects, rather than formulating a predictive model.
The principal contribution of this study is the examination of
the relative impact that syntactic, logical, and work depen-
dencies have on the failure proneness of software systems.
While all of these factors are shown to be related to failures,
the strength of the relationships varies dramatically. Under-
standing the relative impact is critical for determining where
to focus research, tools, and process improvement. In
addition, we also sought to improve the external validity of
the study by replicating the analysis over multiple releases of
two distinct projects from two unrelated companies.

The remainder of the paper is organized as follows: The
next two sections elaborate on how syntactic, logical, and
work-related dependencies relate to a software system’s
failure proneness. Sections 4, 5, and 6 describe the study

864 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 6, NOVEMBER/DECEMBER 2009

. M. Cataldo is with the Research and Technology Center, Robert Bosch LLC,
2 North Shore Center, #320 Pittsburgh, PA 15212.
E-mail: marcelo.cataldo@us.bosch.com.

. A. Mockus is with Avaya Labs Research, 233 Mt. Airy Road, Basking
Ridge, NJ 07920. E-mail: audris@avaya.com.

. J.A. Roberts is with the Palumbo Donahue School of Business, Duquesne
University, 600 Forbes Avenue, Pittsburgh, PA 15282.
E-mail: robertsj503@duq.edu.

. J.D. Herbsleb is with the School of Computer Science, Carnegie Mellon
University, 5000 Forbes Ave., Pittsburgh, PA 15213.
E-mail: jdh@cs.cmu.edu.

Manuscript received 3 Nov. 2008; revised 20 Apr. 2009; accepted 22 Apr.
2009; published online 9 July 2009.
Recommended for acceptance by P. Devanbu.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-11-0361.
Digital Object Identifier no. 10.1109/TSE.2009.42.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

methodology, preliminary analyses, and the results, respec-
tively. We conclude the paper with a discussion of the
contributions, limitations, and future work.

2 SOFTWARE DEPENDENCIES AND FAILURE

PRONENESS

The traditional syntactic view of software dependency had
its origins in compiler optimizations, and focused on control
and dataflow relationships [28]. This approach extracts
relational information between specific units of analysis
such as statements, functions or methods, and source-code
files. Dependencies are discovered, typically, by analysis of
source code or from an intermediate representation such as
bytecodes or abstract syntax trees. These relationships can
be represented either by a data-related dependency (e.g., a
particular data structure modified by a function and used in
another function) or by a functional dependency (e.g.,
method A calls method B).

The work by Hutchens and Basili [29] and Selby and Basili
[40] represents the first use of dependency data in the context
of a system’s propensity for failure. Building on the concepts
of coupling and cohesion proposed by Stevens et al. [43],
Hutchens and Basili [29] presented metrics to assess the
structure of a system in terms of data and functional
relationships, which were called bindings. The authors used
clustering methods to evaluate the modularization of a
particular system. Selby and Basili [40] used the data binding
measure to relate system structure to errors and failures.
They found that routines and subsystems with lower
coupling were less likely to exhibit defects than those with
higher levels of coupling. Similar results have been reported
in object-oriented systems. Chidamber and Kemerer [9]
proposed a set of measures that captures different aspects of
the system of relationships between classes. Briand et al. [4]
found that the measures of coupling proposed by Chidamber
and Kemerer were positively associated with failure prone-
ness of classes of objects.

More recently, models focused on the prediction of
failure proneness have been explored using various con-
cepts to organize (or group) software artifacts into various
units of analysis. These organizing concepts include
architectural, graph-theoretic, and “concerns” perspectives.
Measures such as network, syntactic dependency, and
complexity metrics are used to explore the association
between the artifact groups and postrelease defects. Eaddy
et al. [14] explored defects using concerns (i.e., features or
requirements) to organize software artifacts for analysis.
Here, the authors found that dispersion of a concern’s
implementation (“scatter”) was associated with software
defects. Nagappan and Ball [35] explored software failures
using two architectural levels within Microsoft Windows to
establish their unit of analysis. The authors found that
syntactic dependencies and source-code change metrics
(“churn”) calculated within and between components
(binaries or DLLs) and higher level application areas (e.g.,
the Internet Explorer area) were predictive of postrelease
failures. Zimmerman and Nagappan [48] applied a graph
theoretic lens to classify and calculate network measures for
Windows binaries. In this work, the authors demonstrated

that orthogonal linear combinations of network, syntactic
dependency, and complexity metrics could be used to
predict postrelease defects.

In contrast to the previously discussed research, an
alternative view of dependency has been developed in the
software evolution literature. This approach focuses on
deducing dependencies between the source-code files of a
system that are changed together as part of the software
development effort and it was first discussed in the
literature as “logical coupling” by Gall et al. [21]. Unlike
traditional syntactic dependencies, this approach identifies
indirect or semantic relationships between files that are not
explicitly deducible from the programming language
constructs [21]. There are several cases where logical
dependencies provide more valuable information than
syntactic dependencies. Remote procedure calls (RPCs)
represent a simple example. Although the syntactic
dependency approach would provide the necessary infor-
mation to relate a pair of modules, such information would
be embedded in a long path of connections from the RPC
caller through the RPC stubs all the way to the RPC server
module. On the other hand, when the module invoking the
RPC and the module implementing the RPC server are
changed together, a logical dependency is created, showing
a direct dependency between the affected source-code files.
The logical dependency approach is even more valuable in
cases such as publisher-subscriber or event-based systems
where the call-graph approach would fail to relate the
interdependent modules since no syntactically visible
dependency would exist between, for instance, a module
that generates an event and a module that registers to
receive such an event.

Not only does the logical dependency approach have the
potential to identify important dependencies not visible in
syntactic code analyses, it may also filter out syntactic
dependencies that are unlikely to lead to failures. For
example, in the case of basic libraries (e.g., memory manage-
ment, printing functionality, etc.) the syntactic dependencies
approach would highlight these highly coupled files. Yet,
they tend to be very stable and unlikely to fail despite a high
level of coupling. The logical dependency approach elim-
inates these problems as the likelihood of change in files that
implement these basic functions is very low, hence, a logical
dependency would not be established.

It is difficult to know if the logical dependency approach
actually realizes these potential advantages. Only limited
work has focused on the relationship between logical
dependencies and failure proneness of a system. Mockus
and Weiss [32] found that in a large switching software
system, the number of subsystems modified by a change is
an excellent predictor of whether the change contains a
fault. Nagappan and Ball [35] found that architecturally
based logical coupling metrics are correlated with post-
release failure proneness of programs. However, the
authors computed metrics at the level of component and
program areas, a coarse-grain approach resulting in
measures too highly correlated to allow the authors to
assess each metric’s relative impact on failure proneness.

In sum, the extant research exploring the relationship
between failure proneness of software with regard to

CATALDO ET AL.: SOFTWARE DEPENDENCIES, WORK DEPENDENCIES, AND THEIR IMPACT ON FAILURES 865

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

dependencies has focused on a single dependency type
(syntactic or logical) and has not examined the relative
contribution of each of these types. One implication of this
limitation is that decisions regarding the focus of quality
improvement efforts may be misplaced. Additionally,
research in this area has examined only a single project
limiting the external validity of results. This leads to our
first research question:

RQ 1. What is the relative impact of syntactic and logical
dependencies on the failure proneness of a software system?

3 WORK DEPENDENCIES AND FAILURE PRONENESS

The literature on failure proneness has only recently begun
to look at the impact of human and organizational factors on
the quality of such systems. The work on coordination in
software development suggests that identification and
management of work dependencies is a major challenge in
software development organizations [12], [24], [27]. Mod-
ularization is the traditional approach used to cope with
dependencies in product development. In software engi-
neering, Parnas [37] was the first to articulate the idea of
modular software design introducing the concept of
information hiding. Parnas argued that modules be con-
sidered work items, not just a collection of subprograms. The
idea being that development on one module can proceed
independently of the development of another. Baldwin and
Clark [2], in the product development literature, argued that
modularization makes complexity manageable, enables
parallel work, and tolerates uncertainty. Like Parnas,
Baldwin and Clark argued that a modular design structure
leads to an equivalent modular work structure.

The modularization argument assumes a simple and
obvious relationship between product modularization and
task modularization—reducing the technical interdependen-
cies among modules also reduces the interdependencies
among the tasks involved in producing those modules. In
addition, the modular design approach assumes that redu-
cing dependencies reduces the need for work groups to
communicate. Unfortunately, there are several problems
with these assumptions. Recent empirical evidence indicates
that the relationship between product structure and task
structure is not as simple as previously assumed [6]. More-
over, promoting minimal communication between teams
responsible for related modules is problematic because it
significantly increases the likelihood of integration problems
[13], [24]. Herbsleb et al. [26] theorized that the irreducible
interdependence among software development tasks can be
thought of as a distributed constrain satisfaction problem
(DSCP) where coordination is a solution to the DSCP. Within
that framework, the authors argued that the patterns of task
interdependence among the developers as well as the density
of the dependencies in the constraint landscape are important
factors affecting coordination success and, by extension, the
quality of a software system and the productivity of the
software development organization.

More recently, Nagappan et al. [36], Pinzger et al. [38], and
Mockus and Weiss [32] investigated a series of organizational
metrics as predictors of failure proneness in Windows
components and other software. All of the above studies

share important limitations with respect to understanding
the impact of organizational and social factors in failure
proneness. First, they focus on failure prediction models and
contain no analysis of the relative importance of the measures
in predicting software defects. Furthermore, the proposed
measures do not specifically capture work dependencies
per se but rather they are proxies for numerous phenomena
not necessarily related to the issue of work dependencies. For
instance, the measure “number of unique engineers who
have touched a binary” in [36, p. 524] could be capturing
different sources of failures such as difficulties stemming
from disparities in engineers’ experience and organizational
processes rather than capturing issues of coordination [36]. In
sum, there is a need to better understand how the quality of a
software system is affected by the ability of the developers to
identify and manage work dependencies. This leads to our
second research question:

RQ 2. Do higher levels of work dependencies lead to higher levels
of failure proneness of a software system?

4 METHODS

We examined our research questions using two large
software development projects. One project was a complex
distributed system produced by a company operating in the
computer storage industry. The data covered a period of
approximately three years of development activity and the
first four releases of the product. The company had
114 developers grouped into eight development teams
distributed across three development locations. All of the
developers worked full time on the project during the time
period covered by our data. The system was composed of
approximately 5 million lines of code distributed in
7,737 source-code files in C language with a small portion,
of 117 files, in C++ language.

The second project was an embedded software system
for a communications device developed by a major
telecommunications company. Forty developers partici-
pated in the project over a period of five years covering
six releases of the product. All but one developer worked in
the same location. The system had more than 1.2 million
lines of C and C++ code in 1,224 files with 427 files written
using in C++. We will refer to the distributed system as
“project A” and to the embedded system as “project B.”

In both development organizations, every change to the
source code was controlled by modification requests. A
modification request (MR) is a development task that
represents a conceptual change to the software that involves
modifications to one or more source-code files by one or
more developers [33]. The changes could represent the
development of new functionality or the resolution of a
defect encountered by a developer, the quality assurance
organization, or reported by a customer. We refer to the
latter type of defects as “field” defects. A similar process
was associated with each modification request in both
projects. Upon creation, the MR is in new state; it is then
assigned to a particular development team by a group of
managers performing the role of a change control board.
Commits to the version control systems were not allowed
without modification request identifier. This characteristic
of the process allowed the organizations to have a reliable

866 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 6, NOVEMBER/DECEMBER 2009

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

mechanism of associating the modification request reports
with the actual changes to the software code. As soon as all
of the changes associated with a modification request are
completed, the MR is set to review required state and a
reviewer is assigned. Once the review is passed and the
changes are integrated and tested, the modification request
is set to closed state. In project A, we collected data
corresponding to a total of 8,257 resolved MRs belonging
to the first four releases of the product. We collected the
data associated with more than 3,372 MRs in project B. In
the remainder of this section, we describe the measures and
the statistical models used in this research.

4.1 Descriptions of the Data and Measures

We used three main sources of data in both projects A
and B. First, the MR-tracking system data were used to
collect the modification requests included in our analysis.
Second, the version control systems provided the data
that captured the changes made to the system’s source
code. Finally, the source code itself. Using the above data
sources, we constructed our dependent and independent
measures that are described in the following paragraphs.

4.1.1 Measuring Failure

We chose to investigate failure proneness at the file level.
Our dependent variable, File Buggyness, is a binary measure
indicating whether a file has been modified in the course of
resolving a field defect. For each file, we determined if it
was associated with a field defect in any release of the
product covered by our data. We used the logistic
regression model shown in (1) in order to model the binary
dependent variable and assess the effect of syntactic,
logical, and work dependencies.

FileBuggyness ¼
X

i

�i
�SyntacticDependenciesMeasurei þ

X

j

�j
�LogicalDependenciesMeasurej þ

X

n

�n
�WorkDependenciesMeasuren þ

X

k

’k
�AdditionalMeasurek þ ":

ð1Þ

4.1.2 Syntactic Dependencies

We obtained syntactic dependency information using a
modified version of the C-REX tool [25] to identify
programming language tokens and references in each entity
of each source-code file.1 For all revisions of both systems, a
separate syntactic dependency analysis was performed for a
snapshot of all source code associated with that revision.
Each source-code snapshot was created at the end of the
quarter in which the release took place. Using the resulting
data, we computed syntactic dependencies between source-
code files by identifying data, function, and method
references crossing the boundary of each source-code file.
Let Dij represent the number of data/function/method
references that exist from file i to file j. We refer to data

references as data dependencies and function/method refer-
ences as functional dependencies.

Arguably, data and functional syntactic dependencies
could impact failure proneness differently. Functional
dependencies provide explicit information about the rela-
tionship between a caller and a callee. On the other hand,
data relationships are not quite as obvious, particularly in
terms of understanding the modification sequences of data
objects such as global variables. Such understanding
typically requires the usage of a tool such as a debugger.
Consequently, we collected four syntactic dependencies
measures: inflow and outflow data relationships and inflow
and outflow functional dependencies. Each of those four
measures capture the number of syntactic dependencies of
such type exhibited by each file i.

4.1.3 Logical Dependencies

Logical dependencies relate source-code files that are
modified together as part of an MR. If an MR can be
implemented by changing only one file, it provides no
evidence of any dependencies among files. However, when
an MR requires changes to more than one file, we assume
that decisions about the change to one file depend in some
way on the decisions made about changes to the other files
involved in the MR. The concept of logical dependencies is
equivalent to Gall et al.’s [21] idea of logical coupling.

In both projects, modification requests contained infor-
mation about the commits made in the version control
system. As described earlier, such information was reliably
generated as part of the submission procedures established
in the development organizations. Such data allowed us to
identify the relationship between development tasks and
the changes in the source code associated with such tasks.
Using this information, we constructed a logical depen-
dency matrix. The logical dependency matrix is a sym-
metric matrix of source-code files where Cij represents the
sum, across all releases, of the number of times files i and j
were changed together as part of an MR. We accumulate the
data across releases as files that are changed together in an
MR provide mounting evidence of the existence of a logical
dependency. The longer the period of time considered, the
more changes take place, increasing accuracy of the
identified logical dependencies.

Although the association between MRs and changes in
the code was enforced by processes and tools, there are
other sources of potential errors that might impact the
quality of the data represented in the logical dependency
matrix. For instance, a developer could commit a single
change to two files where one contained a fix to one MR and
the second file had an unrelated change to a second MR. We
performed a number of analyses to assess the quality of our
MR-related data and minimize measurement error. We
compared the revisions of the changes associated with the
modification requests and we did not find evidence of such
type of behavior. We also grouped version control commits
that might have been associated with modification requests
that were marked as duplicates under a single MR. Finally,
we examined random samples of modification requests to
determine if developers have work patterns that could
impact the quality of our data such as the example
described above. For instance, during the data collection

CATALDO ET AL.: SOFTWARE DEPENDENCIES, WORK DEPENDENCIES, AND THEIR IMPACT ON FAILURES 867

1. We were not able to utilize common object-oriented coupling
measures as both systems are predominantly written using the C
programming language.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

process of project A, one of the authors and a senior
developer from the project examined a random sample of
90 modification requests. None of the commits contained
changes to the code that were not associated with the task
represented in the modification requests.

Two file-level measures were extracted from the logical
dependency matrix—Number of Logical Dependencies and
Clustering of Logical Dependencies. The Number of Logical
Dependencies measure for file i was computed as the number
of nonzero cells on column i of the matrix.2 Since the logical
dependencies matrix is symmetric, this measure is equiva-
lent to the degree of a node in undirected graph, excluding
self-loops. The difference in the nature of the technical
dependencies captured by the syntactic and logical ap-
proaches is evidenced by the limited overlap between those
two types of dependencies. In project A, 74.3 percent of the
syntactic dependencies were not identified as logical
relationships between a pair of source of files while in
project B such difference was 97.3 percent.

Herbsleb et al. [26] argued that the density of depen-
dencies increases the likelihood of coordination break-
downs. Building on that argument, we constructed a second
measure from the logical dependency matrix that we called
Clustering of Logical Dependencies. Unlike the Number of
Logical Dependencies, this measure captures the degree to
which the files that have logical dependencies to the focal
file have logical interdependencies among themselves.
Formally and in graph theoretic terms, the Clustering of
Logical Dependencies measure for file i is computed as the
density of connections among the direct neighbors of file i.
This measure is equivalent to Watts’s [47] local clustering
measure and it is mathematically represented by (2) where
ki is the number of files or “neighbors” that a particular
file i is connected to through logical dependencies and ejk is
a link between files j and k which are neighbors of file i. The
values of this measure range from 0 to 1.

CLDðfiÞ ¼
2jfejkgj
kiðki � 1Þ : ð2Þ

4.1.4 Work Dependencies

We constructed two different measures of work dependen-
cies—Workflow Dependencies and Coordination Requirements.
Workflow Dependencies capture the temporal aspects of the
development effort while Coordination Requirements capture
the intradeveloper coordination requirements.

Workflow Dependencies. As described previously, both
projects used MR-tracking systems to assess the progress of
development tasks. Each modification request followed a
set of states from creation until closure. Those transitions
represent an MR workflow where particular members of the
development organization had work-related responsibilities
associated with such MR at some point in time during its
lifecycle. Such a workflow constitutes the traditional view of
work dependencies were individuals are sequentially
interdependent on a temporal basis [45]. More specifically,
two developers i and j are said to be interdependent if the
MR was transferred from developer i to developer j at some

point between the creation and closure of the MR. For
instance, suppose an MR requires changes to two sub-
systems, with the changes to the second relying on changes
to the first. Developer i completes the work on subsystem
one and then he/she transfers the development task to
developer j to finish the work on the subsystem two.

Grouping the workflow information of all of the MRs
associated with a particular release of the products, we
constructed a developer-to-developer matrix where a cell cij
represents the number of work dependencies developer i has
on developer j. The information in such a matrix captures the
web of workflow-related dependencies in which each
developer was embedded during a particular release of the
product. Such developer-to-developer relationships can be
examined through the lenses of social network analysis which
provides the relevant theoretical background and methodo-
logical framework [30], [46]. A traditional result in the social
network literature is that individuals centrally located in the
network (i.e., have, on average, a larger number of relation-
ships to other individuals) tend to be more influential because
they control the flow of information [5], [30]. On the negative
side, a high number of linkages requires a significant effort on
the part of those individuals in order to maintain the
relationships [5], [30]. This latter point is particularly
important in the context of the workflow dependencies
because it argues that centrally located developers are more
likely to be overloaded because of the effort associated with
managing the work dependencies, increasing the likelihood
for communication break downs and thus the quality of
software produced could be expected to diminish.

Degree centrality [19] is a traditional measure used in the
social network literature to identify central individuals
based on the number of ties to other actors in the network.
Formally, degree centrality is defined as DCðni;MÞ ¼ dðniÞ,
where dðniÞ is the number of connections of node ni in
matrix M. The values of this measure range from 0 to n� 1,
where 0 indicates the node is an isolate (i.e., not connected
to any other node) and n� 1 indicates that the node i has
ties to all other n� 1 nodes. Building on the theoretical
argument outlined in the previous paragraph and on the
concept of degree centrality, the Workflow Dependencies
measure was constructed as follows: For each file i, we
identified the developer j that worked on the file and was
linked to the greatest number of individuals in the
developer-to-developer workflow network for each release.
That is, the developer exhibiting the highest degree
centrality. As discussed earlier, such individuals are the
more likely to introduce an error due to higher levels of
effort they face in managing a higher number of work
dependencies. Equation (3) formally describes the Workflow
Dependencies measure. We also considered the average of
the number of linked developers over the set of developers
that worked on each file. However, this measure was highly
correlated with our other independent measures and thus
excluded from further analysis.

WDðfiÞ ¼ maxfDCðdevj;WDÞj
j 2 fdevelopers that changed figg:

ð3Þ

Coordination Requirements. Workflow dependencies
relate developers through the temporal evolution of

868 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 6, NOVEMBER/DECEMBER 2009

2. The diagonal of the matrix indicates the number of times a single file
was modified and can be disregarded from further analysis.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

modification requests and the developers’ involvement in
those MR. There are additional work-related dependencies
that emerge as development work is done in different parts
of a system. For instance, two developers could work on
two different modification requests involving files that are
syntactically or logically interdependent. In this case,
modifications made by each developer could impact the
other’s work. These types of work-related dependencies are
more subtle in nature and require more effort on the part of
the developers to identify and manage. Cataldo et al. [6]
proposed a framework for examining the relationship
between the technical dependencies of a software system
and the structure of the development work to construct
such system. Coordination requirements, an outcome of
that framework, represent a developer-by-developer matrix
(CR) where each cell CR ij represents the extent to which
developer i needs to coordinate with developer j given the
assignments of development tasks and technical dependen-
cies of the software system. More formally, Cataldo et al. [6]
defined the CR matrix as follows:

CR ¼ TA �TD �TTA ; ð4Þ

where TA is the Task Assignments matrix, TD is the Task
Dependencies matrix, and TT

A is the transpose of the Task
Assignments matrix. In the context of our study, the TA and
TD matrices were constructed using data from the MR
reports and the version control system in the following way:
An MR report provides the “developer i modified file j”
relationship. We grouped such information across all
modification requests in a particular release to construct
the Task Assignment matrix which is a developer-to-file
matrix. The Task Dependency matrix was a file-to-file matrix
and it was constructed using the same approach described
in the computation of the logical dependencies measures. In
other words, each cell cij of the Task Dependency matrix
represents the number of times a particular pair of source-
code files changed together as part of the work associated
with the MRs. Following the theoretical argument and the
process presented in the previous section (description of
workflow dependencies), the Coordination Requirements
measure captures for each file i, the degree centrality of
the most central developer in the CR matrix (a developer-to-
developer matrix) that worked on the file i. Equation (5)
formally describes the Coordination Requirements measure.

CRðfiÞ ¼ maxfDCðdevj; CRÞj
j 2 fdevelopers that changed figg:

ð5Þ

4.1.5 Additional Control Factors

The objective of this study is to examine the relative impact
that important conceptual factors such as technical and
work dependencies have on failure. In order to account for
the effects of potentially confounding influences, however,
our analysis must include factors that past research has
found to be associated with failures. Numerous measures
have been used to predict failures [14], [18], [23], [35], [36],
[48]. As suggested by Graves et al. [23], such measures can
be classified as either process or product measures. Process
measures such as number of changes, number of deltas, and
age of the code (i.e., churn metrics) have been shown to be

very good predictors of failures [23], [35]. Accordingly, we
control for the Number of MRs, which is the number of times
the file was changed as part of a past defect or feature
development. We also control for the Average Number of
Lines Changed in a file as part of MRs.

In contrast, product measures such as code size and
complexity measures have produced somewhat contra-
dictory results as predictors of software failures. Some
researchers have found a positive relationship between
lines of code and failures [4], [23], while others have found a
negative relationship [3]. Our collective experience regard-
ing the relationship between product measures and soft-
ware defects has been that such measures are associated
with increased software failure. Thus, we expect that
product measures will be positively associated with soft-
ware defects. We measure the size of the file (LOC) as the
number of nonblank noncomment lines of code.

5 PRELIMINARY ANALYSIS

Our four dependency measures (syntactic, logical, workflow,
and coordination requirements) capture different character-
istics of the technical and work-related dependencies that
emerge in the development of software systems. Table 1
presents a comparative summary of our dependency
measures. Syntactic and Workflow dependencies are explicit
in nature and are therefore easier to identify and manage by
developers or other relevant stakeholders in software
development projects. On the other hand, the Logical and
Coordination Requirement dependency measures capture
less explicit, more subtle relationships among software
artifacts and developers, respectively. The implicit nature
of those dependencies makes identification and management
of such relationship more challenging. In sum, our measures
assess explicit and implicit dependencies that emerge in the
technical and work-related dimensions of software projects.

Table 2 summarizes the descriptive statistics of all the
measures described in the previous sections. Due to a
moderate degree of skewness, we applied a log transforma-
tion to each of the independent variables. Table 3 reports
the pairwise correlations of all our measures. Overall, the
pairwise correlations are relatively similar across projects
indicating that the phenomena reflected by these measures
may be common in both projects. There are, however,
several high correlations that deserve attention. For
instance, the Number of MRs (past changes) variable is
highly correlated with LOC, Average Lines Changed, and our
measure of logical dependencies, particularly in project B.
In addition, the syntactic dependencies measures are also
highly correlated among themselves and with other
measures such as LOC and Number of MRs. We computed
variance inflation factors (VIFs) and tolerances to further
examine potential issues due to multicollinearity among our
independent variables. A tolerance close to 1 indicates little
multicollinearity, whereas a value close to 0 suggests that
multicollinearity may be a significant threat. VIF is defined
as the reciprocal of the tolerance.

Table 4 reports the variance inflation factor and
tolerance associated with each of our measures. We start
our multicollinearity diagnostic with model I that contains
all our independent measures. We observe that, for both

CATALDO ET AL.: SOFTWARE DEPENDENCIES, WORK DEPENDENCIES, AND THEIR IMPACT ON FAILURES 869

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

projects A and B, the measures Out-Data Syntactic

Dependencies and Out-Functional Syntactic Dependencies have

a VIF significantly higher (or a tolerance significantly

lower) than the other measures. We removed those two

variables and the recomputed VIF and tolerances values for

the remaining measures are reported in model II in Table 4.

We observe that Number of MRs has a lower tolerance than

the rest of the measures, particularly in project B’s data.

Consequently, we removed it and the resulting VIFs and

tolerances are reported in model III. In this case, the data

for project A do not show signs of multicollinearity, with

the tolerances of all measures above 0.70.
On the other hand, in project B, the low tolerance values

for the two measures of work dependencies suggest some

potential multicollinearity problems. Removing the Coordi-

nation Requirement Dependencies measure from model III

results in an improvement of the VIF associated with

Workflow dependencies down to 1.20 (tolerance ¼ 0:8304).

In addition, the tolerances of all remaining variables

increased with the minimum value being 0.7028 for the

870 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 6, NOVEMBER/DECEMBER 2009

TABLE 2
Descriptive Statistics

TABLE 1
Comparative Summary of Dependency Measures

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

LOC measure. In Section 6, we revisit this issue when
discussing the results from our regression analyses.

6 RESULTS

We approached the analysis in two stages. In the first stage,
we focused on examining the relative impact of each
dependency type on failure proneness of source-code files.
The data corresponding to the last release from each project
were used in this analysis. In the second stage, we verified
the consistency of the initial results by conducting a number

of confirmatory analyses for each project. These analyses
included reestimating our logistic regression models for
each release as well as estimating a single longitudinal
model comprising all releases. The detailed results of each
stage are discussed in turn.

6.1 The Impact of Dependencies

We constructed several logistic regression models to
examine the relative impact of each class of independent
variable on the failure proneness of a software system using
the data from the last release of each project. Following a

CATALDO ET AL.: SOFTWARE DEPENDENCIES, WORK DEPENDENCIES, AND THEIR IMPACT ON FAILURES 871

TABLE 3
Pairwise Correlations (�p < 0:01) for Last Release in Each Data Set

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

standard hierarchical modeling approach, we started our
analysis with a baseline model that contains only the
traditional predictors. In subsequent models, we added the
measures for syntactic, logical, and work dependencies
described in the previous sections. We assessed the good-
ness of fit of the model to evaluate the impact of each class
of dependency measures on failure. For each statistical
model, we report the �2 of the model, the percentage of
deviance explained by the model as well as the statistical
significance of the difference between a model that adds
new factors and the previous model without the new
measures. Deviance is defined as �2 times the log like-
lihood of the model. The percentage of the deviance
explained is a ratio of the deviance of the null model
(containing only the intercept) and the deviance of the final
model. Model parameters were estimated, as is customary
in logistic regression, using a maximum-likelihood method.
In order to simplify the interpretation of the results, we
report the odds ratios associated with each measure instead
of reporting the regression coefficients. Odds ratios larger
than 1 indicate a positive relationship between the
independent and dependent variables whereas an odds
ratio less than 1 indicates a negative relationship. For
example, an odds ratio of two for a binary factor doubles
the probability of a file having a customer-reported defect
when the remaining factors in the model are at their lowest
values. The presented odds ratio is the exponent of the
logistic regression coefficient.

Tables 5 and 6 report the odds ratios of the various
logistic regression models using the data from project A and

project B, respectively. In both tables, model I includes the
LOC and Avg. Lines Changed measures. As discussed in
Section 5, the Number of MRs measure (a proxy for past
changes) was not included in the analyses due to multi-
collinearity concerns. Model I, in Tables 5 and 6, shows that
LOC is positively associated with failure proneness. These
results agree with those found by Briand et al. [4], in
contrast with earlier findings [3], [34]. Avg. Lines Changed is
also positively related to failure proneness in both projects,
indicating that the more modifications to a file, the higher
the likelihood of encountering a field defect associated with
that file. Specifically, a unit change in the log-transformed
Avg. Lines Changed measure (or a change from 1 to 2.7 lines
per MR in untransformed units) increases the odds of a field
defect by 20 percent for project A (Table 5—Model I) and
25 percent in the case of project B (Table 6—Model I).

Model II introduces the syntactic dependency measures
Inflow Data and Inflow Functional. The results of the logistic
regression show that the impact of data syntactic depen-
dencies are only marginally significant, which can be seen
more clearly as the other factors are included in the
regression model (see models III-V in Tables 5 and 6). In
the case of project A, data syntactic dependencies are
statistically significant across the various models and with
the expected direction in their impact on failure proneness.
On the other hand, the impact of the functional syntactic
dependencies measure, unexpectedly, has the opposite
direction. However, once the models include logical and
work dependencies, the functional syntactic dependency
measure no longer has statistical significance, indicating

872 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 6, NOVEMBER/DECEMBER 2009

TABLE 4
Collinearity Diagnostics

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

that this type of syntactic relationship does not impact
failure proneness. This latter pattern is also reflected in the
data for project B, where both syntactic dependency
measures become irrelevant once the logical and work
dependency measures enter the models (see Table 6—mod-
els III-V). Given the limited impact of the syntactic
dependencies on failure proneness it is not surprising to
see a relatively modest improvement in the explanatory
power of model II over model I (e.g., in project A, deviance
improves from 7.1 percent to 7.5 percent). We do note,
however, that, while improvement in the explanatory
power is modest, the addition of the syntactic dependency
measures does provide a statistically significant improve-
ment in model fit as indicated by the model comparison �2

(project A: 23.34—p < 0:01; project B: 14.41—p < 0:01).
Model III also considers the logical dependency mea-

sures. As Tables 5 and 6 show, the odds ratios associated
with each of the logical dependency measures in the logistic
regression are greater than one, indicating that higher

numbers of logical dependencies are related to an increase
in the likelihood of failure. In particular, a unit increase in
the log-transformed Number of Logical Dependencies measure,
increases the odds of a failure 2.272 times higher for
project A (Table 5—Model III) and 2.277 times higher for
project B (Table 6—Model III). The analyses reported in
Section 5 showed relatively low levels of correlation
between syntactic and logical dependency measures. Thus,
the results reported in Tables 5 and 6 suggest the effect of
logical dependencies on failure proneness is complemen-
tary and significantly more important than the impact of
syntactic dependencies. In addition, the levels of explained
deviance for model III in both projects clearly shows that
the contribution of the logical dependencies measures to the
explanatory power of the model is much higher than the
impact of the syntactic dependencies measure.

The results reported in Model III in Tables 5 and 6 also
indicate that increases in the Clustering of Logical Dependen-
cies significantly reduce the likelihood of failures. This

CATALDO ET AL.: SOFTWARE DEPENDENCIES, WORK DEPENDENCIES, AND THEIR IMPACT ON FAILURES 873

TABLE 6
Odds Ratios from Logistic Regression on Project B (Embedded System) Data

TABLE 5
Odds Ratios from Logistic Regression on Project A (Distributed System) Data

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

result may suggest that the clustering is a symptom of good,
consistent modular design. Alternatively, it may be that as
clusters of consistently interrelated files emerge, developers
become more cognizant of such relationships and know
where to look to make sure that changes to one part of the
system do not introduce problems elsewhere.

In both Tables 5 and 6, model IV includes the first of our
work dependency measures—workflow dependencies. The
results are consistent across both projects. Higher numbers
of workflow dependencies increase the likelihood that
source-code files contain field defects. In particular, a unit
increase in the log-transformed number of Workflow Depen-
dencies measure increases the odds of a failure 2.011 times
higher for project A (Table 5—Model IV) and 6.527 times
higher for project B (Table 6—Model IV). Model V shows the
impact of the second work dependency measure—coordina-
tion requirements. In project A, the impact of the Coordina-
tion Requirement measure is statistically significant and with
an odds ratio of 2.801, its impact is higher than the impact of
the Workflow Dependencies. On the other hand, in
project B, its effect is not statistically significant. As
discussed in Section 5, there is high collinearity between
the two work dependency measures in project B’s data
(Table 3: correlation is 0.75; Table 4: VIFs > 2); consequently,
the regression results were expected.

In this paper, we set out to examine the relative impact of
syntactic, logical, and work-related classes of dependencies
on failure proneness. The results presented in this section
showed that all types of dependencies affect failures in a
software system. More importantly, their role is comple-
mentary, suggesting the various types of dependencies
capture different relevant aspects of the technical properties
of a software system as well as elements of the software
development process. Logical and work dependencies have
a significantly higher impact on failure proneness as their
associated odds ratios indicate. For instance, a unit increase
in the log-transformed measures of Number of Logical
Dependencies and Workflow dependencies increases the odds
of postrelease defects two times more than syntactic
dependencies in the case of project A and two times and
six times, respectively, for the case of project B.

6.2 Stability Analysis

In the previous section, we showed that the different types
of dependencies affected failure proneness in the last
release of each project. It is also critical to examine whether
our results are robust across the various releases of the
products covered by our data. Accordingly, we ran the
same logistic regression models on the data from the first
three releases from project A and the additional five
releases from project B. Table 7 reports the odd ratios for
all the measures from the logistic regression using the data
from project A. Table 8 reports the odd ratios for the
measures from the logistic regression using the data from
project B. As discussed in the previous section, we did not
include the Coordination Requirement Dependencies measures
in the analysis of project B because of the high correlation of
that measure with the Workflow Dependencies measure. We
observe that the results are mostly consistent with those
reported in the previous section for both project A and B.
However, there is one exception. The results for the
measure of Workflow Dependencies are not consistent across
releases in the data from project A. One possible explana-
tion is the changing nature of the development work
associated with each release. For instance, release 1 of
project A was in fact the first release of the product. The
development effort associated with subsequent releases
involved an increasing amount of work related to fixing
defects reported against previous releases and a decreasing
amount of development effort on new features. In the case
of project B, the impact of the Workflow Dependencies
measure is consistent across all five releases. However,
the coefficient for release 1 is not statistically significant.

The results reported in Tables 7 and 8 showed overall
consistent effects of our predictors across the different
releases covered by our data. However, the development
effort associated with each release might have a temporal
relationship. For instance, the technical or work dependen-
cies from release 2 could influence the measures from
release 3. More formally, the various measures associated
with each of the releases could exhibit autocorrelation.
Therefore, we ran an additional confirmatory analysis using
a longitudinal (random effects) model that considers the

874 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 6, NOVEMBER/DECEMBER 2009

TABLE 7
Impact of Dependencies across Releases in Project A

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

data from all releases in each project simultaneously. Using
this procedure, we accounted for any potential temporal
factors that might affect the estimation of the coefficients
that represent the impact of our measures on failure
proneness. Overall, the results of the random effects model
were consistent with those reported in Tables 5, 6, 7, and 8.

7 DISCUSSION

The observed relative contributions of different types of
dependencies on failure proneness in two unrelated
projects have consequences of both theoretical and practical
interest. All three types of dependencies are relevant and
their impact is complementary, showing their independent
and important role in the development process. These
results suggest that quality improvement efforts could be
tailored to ameliorate the negative effects of particular types
of dependencies with emphasis on areas that have the
largest impact on project quality.

Past research [4], [29], [40] has shown that source-code
files with a higher number of syntactic dependencies were
more prone to failure. Our analyses indicate that such
impact is limited. On the other hand, our results suggest
logical dependencies and work dependencies are signifi-
cantly more important factors impacting the likelihood of
source-code files to exhibit field defects. In addition, this
study is the first analysis that highlights the importance of
the structure of the logical relationships—source-code files
with logical dependencies to other files that are also highly
interdependent among themselves were less likely to
exhibit customer-reported defects. We can view these
groups of files as a unit where the structure of the technical
dependencies in the unit influences its quality. These results
suggest a new view of product dependencies with sig-
nificant implications regarding how we think about mod-
ularizing the system and how development work is
organized. The effect of the structure of the network of
product dependencies elevates the idea of modularity in a
system to the level of “clusters” of source-code files. These
highly interrelated sets of files become the relevant unit to
consider when development tasks and responsibilities are
assigned to organizational groups.

The second significant contribution of this study is the
recognition and the assessment of the impact the engineers’
social network has on the software development process.
Nagappan et al. [36] have examined the impact on failure
proneness of structural properties of the formal organization
(e.g., organizational chart). However, the informal organiza-
tion which emerges as part of personal relationships is
significantly more important for performing tasks in
organizations [30]. Similarly, Meneely et al. [31] looked at
the relationship among developers based on a file-touched
network that may to some extent reflect social relationships
among the developers that are more directly captured using
workflow measures. Our measures of work dependencies
capture the important elements of the informal organization
in the context of software development tasks. Our results
showed that individuals that exhibited a higher number of
workflow dependencies and coordination requirements
were more likely to have defects in the files they worked
on. These findings suggest the difficulty of needing to
receive work from or coordinate with multiple people and
manage those relationships appropriately in order to per-
form the tasks.

This study has an additional characteristic worthy of
note. The empirical analyses were replicated across two
distinct projects from two unrelated companies obtaining
consistent results. This replication provides us with
unusually good external validity that is not easily achieved
given proprietary concerns, etc.3 We believe this study
provides a proof of concept that such analyses are possible,
and given the improved external validity, we think such an
approach should be adopted (wherever logistics permit) as
a standard of validity for industry studies.

7.1 Threats to Validity and Limitations

First, it is important to highlight some potential concerns for
construct validity, particularly regarding work dependen-
cies. Over the years, there have been many efforts to
measure task interdependencies in the context of software

CATALDO ET AL.: SOFTWARE DEPENDENCIES, WORK DEPENDENCIES, AND THEIR IMPACT ON FAILURES 875

TABLE 8
Impact of Dependencies across Releases in Project B

3. In our case, it required a strategy in which data extraction was
performed on machines inside company firewalls, to ensure that only
anonymized data are provided for statistical modeling.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

development. However, most of the approaches have
focused on stylized representations of work dependencies,
particularly in organizational studies (e.g., [10], [42]). Our
study proposed two measures that capture the fine-grained
dependencies that exist in software development and
emerge over time as technical decisions are implemented.
Certainly, there might be other potentially superior mea-
sures of development work dependencies; however, little is
known about how to develop such measures.

Operationalization of software dependency measures is
fraught with difficulties as projects produce products for
different domains, using different tools and disparate
practices, making it difficult to design measures that
capture aspects of the same phenomena across unrelated
projects. Therefore, we felt it was important to replicate the
entire measurement and analysis process on two unrelated
projects each using different sets of tools and practices.
Furthermore, we investigated the stability of the results by
analyzing individual releases and using random effects
models to account for potential autocorrelation.

The work reported in this study has several limitations.
First, our analysis cannot claim causal effects. For example,
even though dependencies in workflow are related to
customer-reported defects, it may be possible that the defects
somehow increase the dependencies in the workflow.
Second, our results on the role of syntactic dependencies are
based on two projects where the software was developed in
two programming languages (C and C++) that are somewhat
similar in terms of how technical dependencies are repre-
sented. Projects that involve programming languages with
very distinct technical properties might exhibit a different
impact of syntactic dependencies on failure proneness.

7.2 Applications

7.2.1 Enhancing Dependency Awareness

We observed that logical dependencies were considerably
more relevant than syntactic dependencies in relation to the
failure proneness of a software system. They may also be
less apparent to developers since they are not as easily
discovered by tracing function calls, value assignments, or
other things locally visible in the code.

Tools such as TUKAN [41], Palantir [39], and Ariadne
[44] provide visualization and awareness mechanisms to
aid developers in coordinating their work. Those tools
achieve their goal by monitoring concurrent access to
software artifacts, such as source-code files, and by
identifying syntactic relationships among source-code files.
This information is visualized to assist the developers in
resolving potential conflicts in their development tasks.
Using the measures proposed in this paper, new tools or
extensions to those tools could be developed to provide an
additional view of product dependencies using logical
dependencies. These new tools would then be in a position
to provide complementary product dependency informa-
tion to the developers which could be more valuable in
terms of raising awareness among developers about the
potential impact of their changes in the software system.
Moreover, since logical dependencies might be of different
types such as implicit relationships (e.g., events), cascading
function calls, or time-related relationships, tools could
leverage such a categorization to provide more selective

awareness information for particular user needs or work
contexts. Second, these new tools could also provide a
more precise view of coordination needs among developers
using the work dependencies measures presented in this
paper. For instance, the coordination requirements measure
goes beyond identifying such dependencies, allowing
developers to identify those files that have dependencies
among themselves when those dependencies are not
explicitly determined. It is important to also highlight that
the development of future tools that use logical and
coordination requirements dependencies is faced with
important challenges such as the identification of the most
relevant subset of dependencies for a particular work
context and the presentation of such information to
improve awareness and limit “play the system” behavior.
There are also some minor but quite relevant process-
related issues that require attention such as difficulty of
maintaining consistent data about modification requests
and version control changes over time and automation of
the collection and processing of the data.

7.2.2 Reducing and Coping with Dependencies

Once developers, architects, or other relevant stakeholders
become aware of particular patterns of technical dependen-
cies, they could be in a position to utilize specific techniques
to reduce those dependencies, in particular logical relation-
ships. For instance, system rearchitecting is a promising
technique to reduce logical dependencies and in a large
system it was demonstrated to relate to quality improve-
ments [22]. Other code reorganization techniques that make
the structure of the systems more suitable for geographi-
cally distributed software development organizations could
also focus their attention on logical dependencies. Such is
the case of the globalization by chunking approach [33] that
provides a way to select tightly clustered groups of source-
code files (in terms of logical dependencies) that exhibit few
logical dependencies with the rest of the system. Alterna-
tively, methods to make logical dependencies more explicit
by, for example, introducing syntactic dependencies where
only logical dependencies exist could be explored given the
important difference between the role of logical and
syntactic dependencies suggested by our results.

In recent years, a number of tools that either implement
some of the code reorganization approaches described in
the previous paragraph or provide new mechanisms for
coping with technical dependencies have been proposed.
For instance, tools that highlight and filter changes from
different releases helping to cope with interdependencies
between changes in subsequent releases have been shown
to improve productivity [1]. The results of this study
provide valuable information to allow this type of tool to
focus on those dependencies that are most relevant.

7.2.3 Guiding Future Research

While it seems clear that logical dependencies play a major
role in software failures, we do not yet have a clear idea of
the precise nature of these dependencies. Research and
practices focused on syntactic dependencies, as found in
strongly typed languages, for example, are likely respon-
sible for weakening the relationship between such depen-
dencies and fault proneness. We suggest that an emphasis

876 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 6, NOVEMBER/DECEMBER 2009

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

on understanding the precise nature of logical dependen-

cies is a fertile area for future research. Such research could,

for example, examine the code that is changed together to

understand if it represents cascading function calls or

semantic dependencies, platform evolution, or other types

of relationships. A more detailed understanding of the

bases of logical dependencies is an important future

direction with implications in research areas such as

software quality and development tools.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support by the US

National Science Foundation under Grants IIS-0414698, IIS-

0534656, and IGERT 9972762, the Software Industry Center

at Carnegie Mellon University, and its sponsors, especially

the Alfred P. Sloan Foundation, and the Software Engineer-

ing Institute grant for “Improving Architectural Design

through Organizational Considerations.” The authors also

gratefully thank A. Hassan and R. Holt for providing the

source code for their C-REX tool.

REFERENCES

[1] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using Version
Control Data to Evaluate the Impact of Software Tools: A Case
Study of the Version Editor,” IEEE Trans. Software Eng., vol. 28,
no. 7, pp. 625-637, July 2002.

[2] C.Y. Baldwin and K.B. Clark, Design Rules: The Power of Modularity.
MIT Press, 2000.

[3] V.R. Basili and B.T. Perricone, “Software Errors and Complexity:
An Empirical Investigation,” Comm. ACM, vol. 12, pp. 42-52, 1984.

[4] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, “Exploring the
Relationships between Design Measures and Software Quality in
Object-Oriented Systems,” J. Systems and Software, vol. 51, pp. 245-
273, 2000.

[5] R.S. Burt, Structural Holes: The Social Structure of Competition.
Harvard Univ. Press, 1992.

[6] M. Cataldo, P. Wagstrom, J.D. Herbsleb, and K.M. Carley,
“Identification of Coordination Requirements: Implications for
the Design of Collaboration and Awareness Tools,” Proc. Conf.
Computer Supported Cooperative Work, pp. 353-362, 2006.

[7] M. Cataldo, “Dependencies in Geographically Distributed Software
Development: Overcoming the Limits of Modularity,” PhD disserta-
tion, Inst. for Software Research, School of Computer Sciences,
Carnegie Mellon Univ., 2007.

[8] M. Cataldo, M. Bass, J.D. Herbsleb, and L. Bass, “On Coordination
Mechanism in Global Software Development,” Proc. Int’l Conf.
Global Software Eng., pp. 71-80, 2007.

[9] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[10] K.C. Crowston, “Toward a Coordination Cookbook: Recipes for
Multi-Agent Action,” PhD dissertation, Sloan School of Manage-
ment, Masschusetss Inst. of Technology, 1991.

[11] B. Curtis, H. Kransner, and N. Iscoe, “A Field Study of Software
Design Process for Large Systems,” Comm. ACM, vol. 31, pp. 1268-
1287, 1988.

[12] C.R.B. de Souza, “On the Relationship between Software
Dependencies and Coordination: Field Studies and Tool Support,”
PhD dissertation, Donald Bren School of Information and
Computer Sciences, Univ. of California, Irvine, 2005.

[13] C.R.B. de Souza, D. Redmiles, L. Cheng, D. Millen, and J.
Patterson, “How a Good Software Practice Thwarts Collaboration
—The Multiple Roles of APIs in Software Development,” Proc.
Conf. Foundations of Software Eng., pp. 221-230, 2004.

[14] M. Eaddy, T. Zimmermannn, K.D. Sherwood, V. Garg, G.C.
Murphy, N. Nagappan, and A.V. Aho, “Do Crosscutting Concerns
Cause Defects?” IEEE Trans. Software Eng., vol. 34, no. 4, pp. 497-
515, July/Aug. 2008.

[15] S.G. Eick, T.L. Graves, A.F. Karr, A. Mockus, and P. Schuster,
“Visualizing Software Changes,” IEEE Trans. Software Eng.,
vol. 28, no. 4, pp. 396-412, Apr. 2002.

[16] S.D. Eppinger, D.E. Whitney, R.P. Smith, and D.A. Gebala, “A
Model-Based Method for Organizing Tasks in Product Develop-
ment,” Research in Eng. Design, vol. 6, pp. 1-13, 1994.

[17] S. Faraj and Y. Xiao, “Coordination in Fast-Response Organiza-
tion,” Management Science, vol. 52, no. 8, pp. 1155-1169, 2006.

[18] N.E. Fenton and M. Neil, “A Critique of Software Defect
Prediction Models,” IEEE Trans. Software Eng., vol. 25, no. 5,
pp. 675-689, Sept./Oct. 1999.

[19] L.C. Freeman, “Centrality in Social Networks: I. Conceptual
Clarification,” Social Networks, vol. 1, pp. 215-239, 1979.

[20] J.R. Galbraith, Designing Complex Organizations. Addison-Wesley
Publishing, 1973.

[21] H. Gall, K. Hajek, and M. Jazayeri, “Detection of Logical Coupling
Based on Product Release History,” Proc. Int’l Conf. Software
Maintenance, pp. 190-198, 1998.

[22] B. Geppert, A. Mockus, and F. Rößler, “Refactoring for Change-
ability: A Way to Go?” Proc. 11th Int’l Symp. Software Metrics,
pp. 35-48, 2005.

[23] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Trans. Software
Eng., vol. 26, no. 7, pp. 653-661, July 2000.

[24] R.E. Grinter, J.D. Herbsleb, and D.E. Perry, “The Geography of
Coordination Dealing with Distance in R&D Work,” Proc. Conf.
Supporting Group Work, pp. 306-315, 1999.

[25] A.E. Hassan and R.C. Holt, “C-REX: An Evolutionary Code
Extractor for C,” Proc. Conf. Systems Eng. Research Meeting, 2004.

[26] J.D. Herbsleb, A. Mockus, and J.A. Roberts, “Collaboration in
Software Engineering Projects: A Theory of Coordination,” Proc.
Int’l Conf. Information Systems, 2006.

[27] J.D. Herbsleb and A. Mockus, “An Empirical Study of Speed
and Communication in Globally Distributed Software Devel-
opment,” IEEE Trans. Software Eng., vol. 29, no. 6, pp. 481-494,
June 2003.

[28] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing
Using Dependence Graphs,” ACM Trans. Programming Languages
and Systems, vol. 22, pp. 26-60, 1990.

[29] D.H. Hutchens and V.R. Basili, “System Structure Analysis:
Clustering with Data Bindings,” IEEE Trans. Software Eng.,
vol. 11, no. 8, pp. 749-757, Aug. 1985.

[30] D. Krackhardt and J.D. Brass, “Intra-Organizational Networks:
The Micro Side,” Social Network Analysis: Research in the Social and
Behavioral Sciences, pp. 207-229, Sage, 1994.

[31] A. Meneely, L. Williams, W. Snipes, and J. Osborn, “Predicting
Failures with Developer Networks and Social Network Analysis,”
Proc. Foundations of Software Eng., 2008.

[32] A. Mockus and D. Weiss, “Predicting Risk of Software Changes,”
Bell Labs Technical J., vol. 5, pp. 169-180, 2000.

[33] A. Mockus and D. Weiss, “Globalization by Chunking: A
Quantitative Approach,” IEEE Software, vol. 18, no. 2, pp. 30-37,
Mar./Apr. 2001.

[34] K.H. Moeller and D. Paulish, “An Empirical Investigation of
Software Fault Distribution,” Proc. Int’l Software Metrics Symp.,
pp. 82-90, 1993.

[35] N. Nagappan and T. Ball, “Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study,” Proc. First Int’l Symp. Empirical Software Eng. and
Measurement, pp. 363-373, 2007.

[36] N. Nagappan, B. Murphy, and V.R. Basili, “The Influence of
Organizational Structure on Software Quality: An Empirical
Case Study,” Proc. Int’l Conf. Software Eng., pp. 521-530, 2008.

[37] D.L. Parnas, “On the Criteria to Be Used in Decomposing Systems
into Modules,” Comm. ACM, vol. 15, pp. 1053-1058, 1972.

[38] M. Pinzger, N. Nagappan, and B. Murphy, “Can Developer-
Module Networks Predict Failures?” Proc. Foundations of Software
Eng., 2008.

[39] A. Sarma, Z. Noroozi, and A. Van Der Hoek, “Palantir: Raising
Awareness among Configuration Management Workspaces,”
Proc. Int’l Conf. Software Eng., pp. 444-453, 2003.

[40] R.W. Selby and V.R. Basili, “Analyzing Error-Prone System
Structure,” IEEE Trans. Software Eng., vol. 17, no. 2, pp. 141-152,
Feb. 1991.

CATALDO ET AL.: SOFTWARE DEPENDENCIES, WORK DEPENDENCIES, AND THEIR IMPACT ON FAILURES 877

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

[41] T. Schummer and J.M. Haake, “Supporting Distributed Software
Development by Modes of Collaboration,” Proc. European Conf.
Computer-Supported Collaborative Work, pp. 79-89, 2001.

[42] N. Staudenmayer, “Managing Multiple Interdependencies in
Large Scale Software Development Projects,” unpublished PhD
dissertation, Sloan School of Management, Massachusetts Inst. of
Technology, 1997.

[43] W.P. Stevens, G.J. Myers, and L.L. Constantine, “Structure
Design,” IBM Systems J., vol. 13, pp. 231-256, 1974.

[44] E. Trainer, S. Quirk, C. de Souza, and D. Redmiles, “Bridging the
Gap between Technical and Social Dependencies with Ariadne,”
Proc. Workshop the Eclipse Technology Exchange, pp. 26-30, 2005.

[45] J.D. Thompson, Organizations in Action: Social Science Bases of
Administrative Theory. McGraw-Hill, 1967.

[46] E. von Hippel, “Task Partitioning: An Innovation Process
Variable,” Research Policy, vol. 19, pp. 407-418, 1990.

[47] D.J. Watts, Small Worlds: The Dynamics of Networks between Order
and Randomness. Princeton Univ. Press, 1994.

[48] T. Zimmermannn and N. Nagappan, “The Predicting Defects
Using Network Analysis on Dependency Graphs,” Proc. Int’l Conf.
Software Eng., pp. 531-540, 2008.

Marcelo Cataldo received the MS and PhD
degrees in computation, organizations, and
society from Carnegie Mellon University in
2007. He also received the BS degree in
information systems from the Universidad Tec-
nologica Nacional (Argentina) in 1996 and the
MS degree in information networking from
Carnegie Mellon University in 2000. His re-
search interests are geographically distributed
software development with special focus on the

relationship between the software architecture and the organizational
structure in large-scale software development projects. He is a senior
research engineer at Robert Bosch’s Research and Technology Center.

Audris Mockus received the BS and MS
degrees in applied mathematics from the Mos-
cow Institute of Physics and Technology in 1988.
In 1991, he received the MS degree and in 1994
he received the PhD degree in statistics from
Carnegie Mellon University. He is interested in
quantifying, modeling, and improving software
development. He designs data mining methods
to summarize and augment software change
data, interactive visualization techniques to

inspect, present, and control the development process, and statistical
models and optimization techniques to understand the relationships
among people, organizations, and characteristics of a software product.
He works in the Software Technology Research Department of Avaya
Labs. Previously, he worked in the Software Production Research
Department of Bell Labs.

Jeffrey A. Roberts received the MS and PhD
degrees in information systems from Carnegie
Mellon University and the MBA degree from the
University of Texas at Austin. He is an assistant
professor of information systems management
at the Palumbo Donahue School of Business at
Duquesne University. His research interests
include software development methodology,
open source software, and e-enabled business
process improvement. He is a member of the

Association for Information Systems.

James D. Herbsleb received the JD degree
(1980) and the PhD degree in psychology (1984)
from the University of Nebraska, and the MS
degree in computer science (1991) from the
University of Michigan. He is a professor of
computer science and director of the Software
Industry Center at Carnegie Mellon University.
His research interests lie primarily in the inter-
section of software engineering and computer-
supported cooperative work, focusing on such

areas as geographically distributed development teams, open source
software development, and, more generally, on coordination in software
engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

878 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 6, NOVEMBER/DECEMBER 2009

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2010 at 20:56:01 UTC from IEEE Xplore. Restrictions apply.

