
Notation and Representation in Collaborative
Object-Oriented Design: An Observational Study

Uri Dekel and James D. Herbsleb
School of Computer Science, Carnegie Mellon University

{udekel,jdh}@cs.cmu.edu

Abstract
Software designers in the object-oriented paradigm can
make use of modeling tools and standard notations such
as UML. Nevertheless, casual observations from collocated
design collaborations suggest that teams tend to use phys-
ical mediums to sketch a plethora of informal diagrams in
varied representations that often diverge from UML. To bet-
ter understand such collaborations and support them with
tools, we need to understand the origins, roles, uses, and
implications of these alternate representations. To this end
we conducted observational studies of collaborative design
exercises, in which we focused on representation use.

Our primary finding is that teams intentionally improvise
representations and organize design information in response
to ad-hoc needs, which arise from the evolution of the de-
sign, and which are difficult to meet with fixed standard no-
tations. This behavior incurs orientation and grounding dif-
ficulties for which teams compensate by relying on memory,
other communication mediums, and contextual cues. With-
out this additional information the artifacts are difficult to
interpret and have limited documentation potential. Collab-
orative design tools and processes should therefore focus on
preserving contextual information while permitting uncon-
strained mixing and improvising of notations.

Categories and Subject Descriptors D.2.10 [Software En-
gineering]: Design - Methodologies and Representations;
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces Computer Supported Cooperative
Work

General Terms Design, Documentation, Human Factors

Keywords Representation, Notation, Modeling, Collabora-
tive Software Design, UML, OOD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

1. Introduction
Software design is a highly visual activity, where diagrams
are used for brainstorming, grounding, and communicat-
ing ideas and decisions [6]. This is particularly true for the
object-oriented (OO) paradigm, which involves large num-
bers of entities and complex relations between them. Vari-
ous notations have been proposed for expressing designs in
this paradigm, and one of them, the Unified Modeling Lan-
guage (UML) [23], has become a widely recognized stan-
dard. Many software packages and CASE tools enable de-
signers to create UML models for documentation and im-
plementation purposes.

The design of complex software systems, and in partic-
ular object-oriented design (OOD), is often also a highly
collaborative activity, where ideas are presented, discussed,
and refined by multiple stakeholders. Such interactions of-
ten take place in face-to-face design meetings, in which
drawing activities also play a central role [6]. Recent efforts
make UML modeling functionality available to teams using
electronic whiteboards [5,8,15], and some also offer support
for the systematic capture of decisions and rationale [3].

However, casual observation suggests that OOD teams
do not fully utilize these standards, techniques, and tech-
nologies. Instead, they tend to follow an erratic process in
which they generate a plethora of diagrams and fragments
over physical mediums such as whiteboards or paper. These
visual artifacts are not only less aesthetic and complete than
those created electronically, but most importantly, also fre-
quently diverge in their notation from UML, in some cases
substantially.

It is easy to dismiss this everyday phenomenon as a man-
ifestation of a “developer mentality” of cutting corners, or
of the need for agile design methods [1]. However, it also
highlights several issues that have much relevance for the
larger community of OO practitioners and researchers, but
which have received little attention. First, while we have
powerful notations, formalisms, and tools for expressing fi-
nalized designs, we know surprisingly little about the pro-
cesses and representations by which teams create these de-
signs in the first place, and whether the same tools are ap-
plicable in these early stages. Second, while we know that

261

designers often sketch in alternate notations, the origins, se-
mantics, and roles of these notations remain unclear. Third,
we know little about the impact of sketches created in these
notations, the connections between them, and whether they
can be straightforwardly used for documentation or imple-
mentation or transformed into compliance with standard for-
malisms.

These issues have many significant implications. For ex-
ample, it is not clear that UML, which is primarily a speci-
fication and documentation standard, can also effectively be
used as a design notation in early phases and in collabora-
tive settings. Should efforts be invested in modifying UML
or in coming up with a different notation? Can UML-based
design tools be augmented to effectively support early col-
laborative design?

Despite the abundance of literature on sketching and col-
laboration in general, only a few works [5, 8, 9, 28, 29] ad-
dress the unique settings of collaborative OOD, and these
primarily focus on the eventual automatic transformation of
sketches into complete and aesthetic implementation- and
archival-quality UML models. They appear to treat the cre-
ation of these finalized models as the primary motivation
behind drawing activities, and tend to consider the early
sketches as premature or peripheral artifacts that will evolve
in due time; digressions from from UML are treated as ac-
cidental and are deprecated.

While support for transforming and completing these
models into a standard notation is likely valuable for use in
later development stages [6], we suspect that this approach
does not “tell the entire story” about OOD representations,
nor does it support all the unique needs of design teams.
Rather, there may be important underlying reasons behind
the representational choices teams make, which have signif-
icant impact on how teams work in the OO paradigm, and
on how practices and tools can support them.

1.1 About this work
In this paper we seek answers to several questions: First,
what kinds of representations are constructed by design
teams as the design evolves, and how do they diverge
from UML? Second, why are such nonstandard represen-
tations constructed and what purpose do they serve? Third,
how are these representations used throughout the design
process? Fourth, can a better understanding of these repre-
sentations suggest new practices and forms of tool support?

To answer these questions, we conducted a series of
observational studies of collaborative design exercises at
the OOPSLA DesignFest event, focused on representation
and diagram use. These settings allowed us to study the rep-
resentations used by groups of experienced OO practitioners
working on identical problems, while curbing the impact of
organization-specific practices. We discuss this choice and
its potential threats to the validity of our findings in Sec. 3.

Our intention in this paper is not to comprehensively cat-
alogue or explain all the improvised notations used in col-

laborative OOD, or to offer quantitative information about
representational choices, although these are interesting av-
enues for subsequent work. Instead, our presentation is fo-
cused on typical cases in which alternate notations are used,
since these have little to do with the completeness of the
model and are perhaps the most revealing about representa-
tional needs and choices. In addition, we focus on several re-
lated issues which have significant implications for support-
ing collaborative OOD, but which have received limited at-
tention: How heterogeneous information is represented, the
characteristics of designs that spread over multiple diagrams,
and how teams cope with this delocalization.

1.2 Findings and contribution
Our observations suggest that in choosing representations,
teams make deliberate and intentional choices to diverge
from standard notations or borrow idioms from other nota-
tions. While often benefiting from lower physical and cogni-
tive efforts, teams make these choices primarily in response
to the immediate needs arising from their evolving under-
standing of the problem and solution. Improvised freehand
notations are not only easier or faster to use, but also offer
a degree of freedom in selecting structure and interpretation
that may better fit and evolve with the design than a fixed
notation. Similarly, information is dispersed and laid out in
ways that not only increase the locality of related entities, but
which also facilitate a more natural representation of com-
plex heterogeneous information.

While these representational choices allow teams to focus
on creativity, the resulting artifacts and the relations between
them may be less intuitive, exact, and complete. Teams try
to compensate for this by using additional but transient com-
munication mediums, such as voice and gestures, and by re-
lying on memory and contextual cues. Other stakeholders,
however, will face significant difficulties in subsequently in-
terpreting and using the resulting diagrams as documentation
or implementation artifacts. In fact, knowledge of contextual
and historical information of the experiences shared by the
meeting’s participants may be necessary even for diagrams
that teams have explicitly prepared for presentation.

The importance of these findings is in improving our un-
derstanding of collaborative design meetings and in guid-
ing the development of new tools. One contribution of our
work is in demonstrating the priority given to creative ac-
tivities and that some of the noncompliant artifacts, often
treated as peripheral by existing tools and approaches, ac-
tually play a major role in problem-solving and in commu-
nicating about the design. Second, we show several typical
ways in which collaborative design unfolds, and how ad hoc
needs lead away from standard notations. A third contribu-
tion is in highlighting the importance of contextual and his-
torical information in the work of design teams and in its
manifestation into the products, thus prompting efforts to
preserve it. Such efforts may be more effective than attempts
to support or perfect any notational standard, since teams re-

262

quire a flexibility that may not be possible with a fixed rep-
resentation.

Outline: The rest of this paper is organized as follows:
Sec. 2 reviews the literature on the use of visual artifacts
in OOD and the tools for supporting it. Sec. 3 discusses our
choice of settings for the study and presents the methodol-
ogy. We begin presenting our observations in Sec. 4, which
describes the use of alternate notations in individual ar-
tifacts. This presentation continues in Sec. 5, which de-
scribes the representation of heterogeneous information, and
in Sec. 6, which discusses the dependencies between dia-
grams. We discuss these results in Sec. 7, and their implica-
tions for tools in Sec. 8. We conclude and present our current
research directions in Sec. 9.

2. Background and related work
The design and architecture of a complex software system
has significant implications for its functionality, cost, and
reliability; a significant portion is therefore typically done
upfront. While individual developers perform many design
activities, the design of common modules, larger systems,
and components is typically a highly collaborative process
which involves many stakeholders. Design may be the most
collaborative part of the development process [16].

Design tasks generally make heavy use of external rep-
resentations to support problem-solving and collaboration
and to capture the current state of the design [27]. This also
applies to the domain of software design, in which diagrams
go through a lifecycle from transient artifacts used to un-
derstand and come up with a design, to archived documents
serving communication and documentation purposes [6].
However, the choice of representation depends on many fac-
tors, including: intended use, whether design is individual
or collaborative, organizational background, development
paradigm, and the specifics of the design problem.

2.1 Representing completed designs
As with other design domains, well-defined and accepted
representations and notations, rendered aesthetically and
with precision, are important for clearly and unambiguously
expressing finalized software designs [6, 9, 29]. In the OO
paradigm, the Unified Modeling Language [23] has gained
widespread academic and industrial acceptance as a standard
representation for completed designs that serve documenta-
tion or implementation planning purposes.

UML consists of 13 diagram types, which cover many of
the structural, dynamic, and functional aspects of a system.
These notably include: class diagrams (CDs), sequence dia-
grams (SDs), and use-case diagrams (UCDs). UML offers
precise notations for accurate specifications, as well as ex-
tension mechanisms. This comprehensiveness enables com-
pliant UML models to be used as early implementation ar-
tifacts, as blueprints for implementation, or as basis for au-
tomatic code generation [8]. A common criticism of UML

is that it lacks fixed semantics and conventions [4, 26], po-
tentially leading to defects due to misinterpretations. Other
critics, focused on creative modeling, argue that UML is too
strict, and suggested that investment in creating complete
models is not cost-effective [1].

2.2 Representing early designs
While much attention has focused on the representations
used for documenting completed designs, little is known
about the representations used in earlier design phases to
come up with initial designs, and whether the same notations
are applicable. One obvious difference about these phases is
that design teams tend to sketch, often using physical medi-
ums such as whiteboards. Sketching allows designers to ef-
fectively focus on the problem [1], and encourages experi-
mentation with the design [5, 21, 24].

Most of our knowledge on early diagrams in industrial
settings comes from Cherubini’s study of diagram use at Mi-
crosoft [6]. He found that while many diagrams created in
design collaborations were transient, some were immedi-
ately captured for subsequent use or were captured after be-
ing recreated in later collaborations. As their importance be-
came clear, they iteratively became more organized and aes-
thetically pleasing, and were often captured electronically.
The representations used in these diagrams were a a mix
of informal visual conventions based primarily on box-and-
arrow notation, with only limited adoption of standards such
as UML. However, the studied population used a variety of
development paradigms and may not have been proficient
in OOD or UML, and the factors leading to the representa-
tional choices were not studied.

The few observations that do focus on collaborative OOD
work are primarily reported by researchers involved in con-
structing sketch-based design support tools [5, 8, 9, 28, 29]
and take place in specialized settings. In these observations,
the end product is typically a design documented in syn-
tactically correct UML, often in electronic form. Initially,
freehand sketches are used to represent the problem domain,
while limited UML diagrams, incomplete in content and
syntax, are used for early designs of the solution. Damm et
al. [8, 9] further argued that these diagrams are then incre-
mentally evolved into complete and compliant UML mod-
els, with noncompliant elements removed. Overall, these
studies give the impression that divergence from UML is
accidental or unwanted.

Departures from UML or other standard notations might
appear counterproductive when the goal is to produce an
implementation-ready model or documentation. However,
since representation choices have significant impact on de-
sign, constraining the early stages may have unexpected ef-
fects. Clearly, there are different potential uses and outcomes
for diagrams created in design collaborations, and both or-
ganizational practices and prior knowledge of the intended
use of a diagram likely have an impact on the representa-
tional choices. Since our goal is to understand the needs of

263

early design, we have chosen to conduct our study in set-
tings which afford relative freedom from such potentially
confounding constraints.

2.3 Design support tools
Most of the existing tool support for collaborative OOD is
similar to that provided for individual designers, consist-
ing mainly of functionality for creating complete models
in UML. One approach, aimed at distributed teams, is to
offer distributed groupware versions of the familiar single-
user desktop CASE tools [3, 22]. In collocated collabora-
tions, however, designers need large drawing surfaces [12],
which were traditionally only available in the form of white-
boards or paper. As large display technologies became avail-
able, attempts were made to provide OOD specific support
over electronic whiteboards [5,8,15]. These tools focused on
the automated conversion of sketched shapes and handwrit-
ing, which are the natural mode of interaction with a white-
board, into notational primitives and even UML models.

Of particular interest is Damm et al.’s Knight tool [8]
which, based upon the observations described above, offers
a guided mode that facilitates the evolution of these artifacts,
through several levels of restriction, to complete UML mod-
els representing implementation-ready designs. Whenever
artifacts violate UML specifications due to nonstandard no-
tation or incompleteness, their tool forces the offending no-
tations to be changed, or removed. Other tools allow a layer
of uninterpreted “freehand” sketches to coexist with a layer
of structured UML.

The interactive nature of electronic whiteboards raises the
question of how to best support collaborative design, and
what, if any, support should be provided for rough, inter-
mediate forms. We note that although these technologies re-
ceived much attention, their availability is extremely limited,
and most practitioners have no supporting tools when in-
volved in collocated design collaborations. While some re-
search focuses on supporting distributed design, such set-
tings are plagued by many additional problems and are out-
side the scope of the current work.

3. Methods
3.1 Settings
Our studies of collaborative OOD span three incarnations
of the annual DesignFest events of the ACM conference on
Object Oriented Programming Systems Languages and Ap-
plications (OOPSLA). In 2004 we conducted a prelimi-
nary study focused on the physical design environment, us-
ing only photographic evidence [10]. The observations pre-
sented in this paper are primarily based on extensive data
collection in the 2005 session, and always refer to it unless
otherwise noted. In 2006, we conducted a limited validation
study to verify our conclusions.

In this popular conference event, experienced designers
select one of several given design problems and are ran-

domly assigned to one of several teams which will work on
that problem. They are given a short document describing
the problem, constrains on the solution, and important use
cases and scenarios. Depending on the session, teams then
spend 3 to 6 hours coming up with an appropriate design to
solve that problem. The stated goal of this event is to “learn
more about design by doing it and to sharpen design skills
by working on a real problem with others in the field” [11].

One noteable characteristic of the DesignFest event is the
relative freedom given to the teams. While teams are not
expected to produce working systems, they are encouraged,
both in the given documentation and verbally during the ses-
sion, to prepare materials for presentation to others at the
social event at the end of the conference, and for a possible
web archive. However, they are not given explicit require-
ments for the representations and quality of these materials.
Similarly, the given documentation merely suggests a simple
process outline, stepping from introductions to planning, dis-
cussion, sketching and resolution of disagreements. It also
encourages teams to elect a moderator and a recorder, but
we have rarely seen these roles used in practice.

We also note that drawing activites at DesignFest take
place primarily over physical mediums, which offer greater
freedom than electronic tools [2]. The organizers provide all
participating teams with at least one flipchart and several
posterboards, as well as notepads, sticky-notes, tacks and
pens. Powerstrips and wireless internet were available, but
the few participants who used laptops did so mostly for
unrelated activities. Only two participants, from the same
organization but in different teams, tried using a CASE tool
to digitize their teams’ sketches.

3.2 Choice of setting and threats to validity
We chose these settings for three reasons: First, participants
do not have a history of working together, and are collaborat-
ing outside an organizational context that prescribes design
methods, notations, and processes. We believe this simpli-
fies the interpretation of our results and enables generaliza-
tion about common practices. Had we observed teams in an
organizational context with a work history, it would be hard
to disentangle behavior that is merely prescribed by organi-
zational practices or shared team habits, from natural behav-
iors that directly support the immediate task of collaborative
design.

Second, since our focus is on the OO paradigm and the
use of UML in particular, we wanted to minimize the risk
that limited familiarity with these techniques would factor
into the choice of representations. The OOPSLA confer-
ence attracts experienced designers well versed in these
techniques, which adds validity to the findings. Third, since
design problems in DesignFest are based on real-world
projects, we can observe multiple teams working on the
same problem, and reproduce the nonproprietary designs.
Although we could probably find other settings that are bet-
ter in any one of these considerations, DesignFest seems to

264

score adequately on all three, and, in our opinion, deserves
the attention of more researchers.

Observational studies of software development in the lit-
erature take place in the lab, in academic settings, or in
industrial ones. Research in artificial settings enables the
collection of data which could be difficult to gather other-
wise. The DesignFest settings not only allowed us to study
teams of experienced OOD practitioners while restricting
confounding organizational practices, but also to study mul-
tiple teams working on the same problem from scratch, a sit-
uation which rarely occurs in the industry. Of course, these
advantages involve a tradeoff, as artificial settings raise the
question of whether the results could be generalized.

Clearly, additional research in industrial settings is re-
quired to establish that the observations we made here hold
more generally. All setting are unique in certain respects,
and replication in multiple organizations may be necessary.
Nevertheless, let us briefly mention the primary ways in
which DesignFest differs from industrial settings, and esti-
mate their potential impact on generalization.

First, design takes place in isolation from other, over-
lapping, development phase: There is no prior requirement
gathering, though in some sessions the DesignFest organiz-
ers played the role of clients and spent time with each team,
and more importantly, the produced designs are not sub-
sequently implemented. However, DesignFest problems are
based on real-world specifications, and most participants ap-
peared passionate and serious in their work. It is thus likely
that the proposed designs, or at least the initial high-level
sketches, would be similar to those created by industrial
teams early in the design phase.

This brings us to a second problem, of the extreme time
pressure compared compared to industrial settings. While
more research is necessary, we believe that our data reliably
captures how representations are selected when teams first
face the problem, an issue on which limited prior knowledge
exists. The impact of the time limits is likely to be primarily
on how details are fleshed out, documented, and reviewed;
these issues have been studied more extensively by others.

Third, DesignFest participants receive no material com-
pensation for participation and are not held accountable for
their work; the motivation is primarily to learn and interact
with respected peers. In that sense, it resembles open-source
settings, where nonmaterial compensation is key to contribu-
tion. This similarity also applies to the diverse background
of the participants, as industrial teams typically have shared
prior experiences and practices. However, we explicitly tried
to minimize such organizational bias.

3.3 Collected data
In the 2005 session, on which we report here, we made
video recordings of the design sessions of several teams.
We chose video in order to capture as much context as
possible, including a trace of all interactions, annotations,
and references to artifacts. Because teams tend to post and

refer to materials all around them [10], we used widescreen
camcorders to capture more of the design area, one of them
filming in high-definition. To enable us to evaluate the value
and limitations of more available means of preserving design
knowledge, we also made a separate audio recording and
frequently took still photographs. These additional mediums
also served as a redundancy for the material in the videos.

Due to the sensitive nature of video recordings, signif-
icant measures were taken to ensure participant consent.
Prior to the conference, the DesignFest organizers sent pre-
registered participants an email describing the study and ask-
ing for preliminary consent to different recording mediums.
The large number of preregistered participants allowed the
organizers to form initial groups based on consent, with-
out denying anyone their choice of design problem. Since
the DesignFest event is also open to walk-in participants,
potentially affecting group composition, we also verbally in-
troduced the study to each of the consenting groups, and ob-
tained written consent. In addition to changing all names in
this paper, we avoided presenting photos of individuals when
possible, and distorted identifying features in other cases.

The real-life design problems available that year were a
medical information system for a pediatric theraphy clinic, a
system for a web-based image management and photo print-
ing business, and a generic simulator for third-party con-
trollers in industrial production lines. The first two problems
are representative of typical information and eCommerce
systems, while the last is an example of a more exploratory
project in a different domain

Since many consenting teams were working at the same
time, our selection of observed teams attempted to obtain a
blend of problems, to sample groups that had at least four
participants at the beginning of the session, and that were
located in areas with limited acoustic interference from other
teams. Depending on the session, teams worked between 3
and 6 hours excluding breaks, and we tried to film the entire
session of each team. In one case, we switched from team D
to team E to capture more drawing activity. Overall, we
obtained over 20 hours of video footage from seven teams,
summarized in Table 1. We also obtained still photographs
of the work of other teams.

Group Problem Session Length Recorded
A Simulator Sun PM 3 hours All
B Image Shop Sun AM 3 hours All
C Image Shop Sun PM 3 hours All
D Medical System Sun Full 6 hours First 2 hours
E Medical System Sun Full 3 hours Last hour
F Medical System Wed Full 5 hours All
G Medical System Wed Full 5 hours All

Table 1. Groups for which video footage was recorded

265

3.4 Data analysis
Before proceeding to analyze the data, all video footage was
digitally transferred to a video editing software, allowing us
to effectively browse hours of footage to trace the evolution
of artifacts. The tapes were then fully transcribed as LATEX
documents, allowing us to create versions limited to dia-
logue and versions with descriptions of additional activities.

Our analysis of each team’s work typically proceeded as
follows: First, we studied photographs of the finished dia-
grams from the end of the session, and tried to understand
them without additional information, as potential consumers
of these materials would have to. Next, we examined all the
photographs taken throughout the session, and used tempo-
ral cues to obtain a better understanding of the artifacts and
their evolution. Only then we read through the transcripts,
and eventually watched the entire tape. Throughout this pro-
cess, we made notes of relevant observations. Eventually we
pooled and studied the observations from all teams, identi-
fied the examples which we present in this paper, and re-
turned to the materials to study them in depth.

4. Results: Alternate notations in individual
artifacts

Our presentation of the results begins with the representa-
tions used in the collaborative creation of individual arti-
facts.

As could be expected from the venue, UML was utilized
by all observed teams. Specifically, all teams drew class di-
agrams, and several drew sequence diagrams, use-case dia-
grams, and even one package diagram. Perhaps due to the
limitations imposed by the settings, the nine other diagram
types were hardly used. In conformance with our casual ob-
servations and prior works, we frequently observed depar-
tures from UML, and proceeded to investigate them.

Previous researchers [9] suggested that divergences from
UML are mostly accidental and that diagrams eventually
comply with the standard. When we observed teams ex-
plicitly reproducing artifacts for presentation at the confer-
ence’s final event, they indeed tried to create aesthetic and
complete UML models. However, most of these attempts
took place towards the end of the session, after the brunt
of the creative activity was done, and had a relaxed and vi-
sually distinct interaction style: Teams often split up, and
subgroups worked on recreating diagrams on new canvases
instead of modifying existing ones.

In the creative phases, however, we often observed situa-
tions where the departures from UML appeared to be inten-
tional rather than accidental. Specifically, we saw artifacts
which convey information that could have been expressed
in a straightforward manner via UML, but were created in
completely different notations or which violated significant
principles of the standard. These cases are particularly inter-
esting since they yield significant clues about the behavior
and needs of design teams.

To help the reader distinguish the detailed objective de-
scriptions of activities and artifacts from our subjective in-
terpretation and analyses, we present the former as italicized
text. Also, the textual descriptions frequently refer to pho-
tographs of the artifacts. Because of space constraints, we
could only include small images within the text. The reader
is encouraged to view the electronic version of this paper,
where these photos appear in full color and at a much higher
resolution than that possible in print. Using the PDF reader’s
zoom or magnifying glass functionality will make the hand-
writing in many figures legible.

4.1 Adapting to evolution
Certain UML diagram types convey multiple layers of in-
formation. Class diagrams, in particular, not only list the
classes of the system (or its entities in the case of domain-
modeling [1]), but also specify the members of each class,
and the OO (e.g., inheritance) and data cardinality (e.g.,
one-to-many) connections between classes. The notations
of UML allow designers to add this information in any or-
der, while still maintaining the syntactic correctness of the
diagram.

Nevertheless, we observed a number of cases where dia-
grams ended up with all these layers of information, but ex-
pressed in an entirely different form. Teams tended to select
diagram types opportunistically, in order to address the is-
sue at hand, and captured knowledge as it emerged from the
problem-solving process, even if it did not fit the current se-
lection. In some cases, they began constructing a diagram of
one type, only to have it morph into another, while on other
occasions the diagrams turned into a collection of fragments
related only by their relevance to a particular design issue.
We present three such examples in detail, in order to convey
the process by which these changes occur.

4.1.1 Example: structural domain model
Our first example, depicted in Fig. 1, comes from team A,
which was working on the problem of constructing simula-
tors for third-party controllers of production lines.

The team began its session by discussing assumptions,
and then turned to exploring use-cases. Jack, standing by the
flipchart, titled the blank canvas Stories. Then, somebody
suggested that they first cover high-level domain entities,
and others agreed. The team started brainstorming ideas,
which Jack scattered on the titled canvas.

Already, we have a discrepancy that may confuse future
stakeholders: based on the title one may expect to see the
names of use cases, but the diagram actually contains the
names of entities. Team members, on the other hand, will
likely recall that change of direction or recognize the con-
tents of the diagram without relying on the title.

Very soon, it turned out that the proposed entities
could be related and questions were posed and discussed:
Are Node and Waypoint merely synonyms? Are Source

and Destination unique entities, and is there more than

266

(a) Additions to Node (b) Rearranged (c) Add release (d) Final

Figure 1. Steps in the evolution of the initial domain model diagram by team A

one of each? Appearing to make the decisions himself, Jack
used parentheses to make Waypoint an alias of Node, and
then replicated Source and Destination under Node,
with a small right-angled arrow to indicate the connec-
tion (Fig. 1(a)).

Improvising the arrow notation allowed Jack to capture
the connection without disrupting his attempts to also cap-
ture the barrage of brainstormed ideas. However, the figure
became inconsistent with class diagram notation and its se-
mantics unclear. Jack did not clarify the semantics of the
connection, and when another participant proposed a spe-
cialization relation, he did not hear it or simply ignored it.
Nevertheless, he appears to have memorized this notation
for subsequent idiomatic use.

As the team continued to brainstorm, a notion was
suggested for the inventory of items at a particular lo-
cation. At first, it was captured via the Count property
of Node and listed with the same right-angle arrow. A replica
of Count with the arrow was then added under Path. Fur-
ther discussion of the notion of inventory lead to the re-
alization that Source, Destination, and Waypoints are
all special kinds of Node. The representation was changed,
with Waypoint listed above Node, and Node listed un-
der the independent Source and Destination entities
(Fig. 1(b)). It took a while until the redundancy of these
entities under the original Node was fixed. Later on, after
a Release entity was proposed for the Source and written
down (Fig. 1(c)), someone suggested writing the behaviors
in a different color, allowing more methods to be added at
various locations around the entities (Fig. 1(d)).

The resulting diagram, depicted in Fig. 1(d), conveys the
same details as would a class diagram used for domain mod-
eling [1]: candidate classes, properties, methods, and inher-
itance. However, from the point of view of “proper” UML
modeling, its notations are ambiguous without the context of
specific discussions and elements. For example, inheritance,
which in class-diagrams appears as a direct line from a sub-

class to a superclass above it, appears here as an arrow from
a superclass to the name of a subclass below it. The problem
is not only with the direction, but also with the replication of
the superclass name. In addition, the exact same notation is
used to represent a property of a class, and is also similar to
the notation for a method.

These problems may preclude this diagram from serving
as a documentation artifact, at least without contextual in-
formation. For example, how would someone viewing this
artifact infer that Count is a property of Node and not a su-
perclass?

Nevertheless, this diagram appeared to facilitate brain-
storming as a preliminary step to coming up with a solu-
tion. By writing all brainstormed nouns around the board, the
team was able to avoid an early commitment to distinguish-
ing classes, fields, and methods, which require different no-
tations in class-diagrams. Furthermore, keeping the related
entities for each candidate class in close proximity, some-
times at the cost of replication, allowed the preservation of
the diagram as primarily a catalog of entities rather than as
an attempt to fully structure the domain.

4.1.2 Example: structural solution model
In our second example, depicted in Fig. 2, team E, which
was working on the medical information system, arrived in-
directly at a class diagram, while retaining some inconsistent
notations.

The team was trying to envision the usage model of its
system, and started drawing a sequence diagram that started
with a user making a request. Since users interact with the
system and provide it with additional information via web
forms, there was soon a need to represent these forms. Craig,
standing by the posterboard, placed a page that contained a
rudimentary architecture diagram immediately to the left of
the sequence diagram, and partitioned it. In the remaining
area, he started drawing rectangles for UI forms, writing
the names of important actions inside them (Fig. 2(a)). More

267

(a) UI diagram below architecture (b) Becomes entity-relation diagram (c) More relations added (d) Final

Figure 2. Steps in the evolution of the initial solution model diagram by team E

interaction was specified in the sequence diagram, and ad-
ditional web-forms were added.

By increasing the spatial proximity between the two dia-
grams, the team was able to follow and manipulate the rep-
resentations of two facets of the system at the same time.
No evidence, however, remains to alert future stakeholders
of the connection between the two diagrams.

As forms for treatment plan and treatment step

were added, a one-to-many relationship was realized and
captured (Fig. 2(b)), followed by more cardinality connec-
tions (Fig. 2(c)). These changes essentially turned the form
collection into an entity-relation diagram. Then, the team
realized that a Session is a special kind of Appointment,
and added a parallel inheritance arrow to represent it,
turning the drawing into a class diagram. In addition, a
line representing control- and data-flow was added from
the Session to the generated Treatment report, thus di-
verging from class-diagram notation (Fig. 2(d)).

Although the final version of this diagram resembles a
compliant class diagram, it contains additional layers of in-
formation such as the contents of some web-forms. In addi-
tion, certain entities represent entry points into the sequence
diagram, but this contextual information is not captured in
writing and is lost. By combining all this information into
one diagram, the team was able to treat multiple facets of
each entity without replication.

4.1.3 Example: behavioral domain model
Alternate representations evolve not only for structure, but
also for behavior and function.

Team A finished the domain model of the first example,
and began to explore the interaction between the controller
and the simulator with a simple scenario. On a new canvas,
they created a small map of the simulated production line,
consisting of one source and one destination connected by
a single conveyor belt. To describe the behavior, Al wrote
down a business rule, requiring a widget to arrive at the

(a) Early (b) Final

Figure 3. Functional domain model by team A

destination before the next one leaves the source (top of
Fig. 3(a)).

Now, Al wanted to describe the behavior of the controller,
and specified it in two textual steps (middle of Fig. 3(a)).
Jack approached the board and added a sequence diagram
to represent the interactions between both sides of the sys-
tem (bottom of Fig. 3(a)). When they realized that the con-
troller‘s behavior is continuous, Al added a third step, send
next one, and created a flowchart arrow from it back to
the first step. Someone then mentioned the need for an exit-
condition, and Al turned the steps into pseudo-code, by
wrapping them within a while loop with curly braces (mid-
dle of Fig. 3(b)). Later, the sequence diagram was modified
to represent this change, and an external testing agent was
added. (bottom of Fig. 3(b)).

We see that differences in individual perspective can lead
to representation choices that differ in their ability to cope
with the evolution of the design. Al was focused on the con-
troller, and described its behavior in isolation, whereas Jack

268

preferred a view of the entire system. Jack’s choice to use
a sequence diagram later helped cope with the introduction
of an additional entity, the tester, into the system. However,
such diagrams typically represent only a single execution
path, and could not be naturally extended to meet the evolv-
ing need to model iterative and conditional behavior.

The textual representation chosen by Al, on the other
hand, was more malleable, and was complemented by bor-
rowing idioms from familiar representations. The series of
steps seemed sufficient for sequential code, but iterative be-
havior demanded the representation of control flow, and the
arrow notation of flow-charts was promptly borrowed. Flow-
charts, however, bloat under complex control flows, and the
more concise syntactic elements of a programming language
were quickly used.

4.2 Customizing level of structure
Everyday experience tells us that the hand-drawn diagrams
created early in the design process typically appear less aes-
thetic and organized than their finalized versions, especially
electronic ones. In some cases the difference is purely aes-
thetic and the diagram can be rearranged and re-rendered
without actually changing the structure [5]. Other sources [8]
suggest that earlier models are simply less complete, and
omit content and connections outside the current focus; the
missing details are incrementally added later. While we wit-
nessed many examples of less aesthetic diagrams and of less
complete ones, we also observed early diagrams which ap-
peared visually different because of a choice to use a differ-
ent level of structure.

4.2.1 Starting with unstructured representations
Notational standards such as UML typically define several
diagram types, each with its own primitives. Software tools
that support them often require a user to specify the diagram
type in advance, and only allow the use of the appropriate
primitives. However, as we have seen in the previous exam-
ples, an early commitment to a diagram type is not always
practical. In fact, teams may initially work at such a simplis-
tic level that no diagram type is appropriate, since it would
incur significant costs and may constrain them with irrele-
vant structural details.

The most typical example of this behavior occurred as
teams began working on a new canvas and started brain-
storming a homogenous set of entities. For example, if
team A was forced to use a class diagram when construct-
ing the domain model of Fig. 1(d), the cost of surrounding
each new entity in a box might have been marginal. The real
cost would have come from constraining the ability to mod-
ify and experiment as certain entities turned out not to be
classes, but rather properties or methods.

It appears that when teams expected their design to
evolve, they tended to prefer simpler representations that im-
posed less constraints. Often, they chose to use text, in the
form of lists or scattered elements. As the design evolved, re-

lations and annotations were gradually added. In a few cases,
the teams used this opportunity to complete the diagram to-
wards UML. For instance, team F took separate diagrams
conveying a list of actors and a list of activities, placed them
adjacently, and connected them to form a use-case diagram,
as can be seen in Fig. 4.

Figure 4. A use case diagram composed by team F

In most cases, however, teams continued to diverge
from UML. They represented the added information by
repeatedly using improvised notations, as in the case of
team A, or borrowed idioms from other notational standards,
such as the inheritance arrows and relation cardinality anno-
tations from UML class diagrams. The repeated use con-
strained the representation and implicitly added some struc-
ture to the diagram. This structure might eventually help in
the interpretation of the diagram even if the notations are
unclear, as one could likely do with team A’s domain model
from Fig. 1(d).

(a) Team F (b) Team G

Figure 5. Connector notations in two object diagrams

When reuse was limited, and in particular when certain
notations had only a single instance, we were often left
with less structured and consistent representations that were
more difficult to interpret. For example, consider Fig. 5(a)
which depicts a diagram by team F, which was working
on the medical system. The diagram primarily lists entities,
but also conveys several unclear relations. The relations be-
tween role and the several descriptive entities to its imme-
diate right use the same notation, and could thus perhaps
be interpreted as examples or instances of the same concept
even before we consider the actual text of these entities to
verify this assumption. The relationship between patient

269

record and treatment plan, on the other hand, is unique
in this diagram and therefore cannot be interpreted with con-
fidence without contextual knowledge from the actual ses-
sion.

Even if some notations are reused, however, the benefits
can be offset if the emergent structure becomes too com-
plex. Consider Fig. 5(b), which conveys a diagram of objects
from team G, which was also working on the same prob-
lem. In this diagram, it appears that the team initially brain-
stormed entities and scattered them about the board. When
they needed to relate the entities they used generic lines, and
decorated them with borrowed cardinality notations and with
an improvised arrow notation. Nevertheless, the complexity
of the graphs makes it difficult to interpret the improvised
notations or the undecorated lines without additional con-
textual information.

Finally, we note that while lists or scattered sets of enti-
ties on paper allowed teams to begin work with limited struc-
tural restrictions, even more freedom was available to those
who used sticky-notes. For instance, one team in the 2006
study created entities on stickies, placed them on a canvas,
and eventually connected them to form the class diagram
of Fig. 6(a). Many teams, including team D in Fig. 6(b),
added structure by creating hierarchies of bins on a large
canvas and placed atomic elements on sticky-notes The use
of sticky-notes in OOD deserves further focused study, and
may benefit from specialized support in electronic white-
boards [17].

(a) Creating a class diagram (b) Creating custom hierarchies

Figure 6. Uses of sticky notes

4.2.2 Working with more structure
Based on casual observations, one may expect that freeform
design sketches will always have equal or lesser structure
than models adhering to standard notations. After all, these
notations are often designed to accommodate several layers
of complex information. While this may generally be true
for UML class diagrams and sequence diagrams, use-case
diagrams revealed an opposite phenomenon, where seem-
ingly improvised non-conforming notations actually added
structure rather than omitted it.

At its core, a use-case diagram (UCD) is a bipartite graph
which matches a set of actors with a set of use-cases,1 thus

1 Another layer of information connects use-cases to represent extensions
and dependencies, but we rarely saw its use.

offering a straightforward way to represent this many-to-
many relationship. However, to identify the UCs associated
with particular actors, or the actors associated with particu-
lar UCs, one must trace all outgoing edges. This incurs sig-
nificant cognitive effort, since the UCDs for large or dense
relations tend to become cluttered [10].

(a) Team B (b) Team C

(c) Team G (d) Team E

Figure 7. Alternative use case diagrams

While all but one team (A) in our study explicitly listed
actors and UCs or activities, only three of them (C, F, G)
drew actual UCDs. All other teams, as well as team C after
it had already created a standard UCD, preferred to connect
the actors and UCs using the more structured tabular, tex-
tual, and numerical forms depicted in Fig. 7.

It appears that for the two information system problems,
teams tended to partition the set of use cases by an associated
primary actor. This partition effectively created a one-to-
many relationship that could receive little benefit from the
bipartite representation and yet could become difficult to
follow. Teams thus preferred to represent this partition in
structured textual representations, which are more organized
and carry lower cognitive demands, but which cannot be
used for many-to-many relationships.

Use-case diagrams are particularly susceptible to replace-
ment by more structured representations because their inher-
ent structure is so limited. Class- and sequence- diagrams, on
the other hand, are very structured, and we have thus seen
them replaced by alternate notations mostly in the opposite
direction, of less structure.

Nevertheless, even these diagrams types may occasion-
ally be replaced by more structured representation. For ex-
ample, flowcharts, pseudo-code and actual source code are
more structured than sequence diagrams because they inher-
ently support complex conditions, control flow, and reuse be-
havior that is not natural to sequences; this may explain their
use in the earlier example of the behavioral model. Simi-
larly, class diagrams are limited in describing the contents
of each individual class since they simply present a list of
members. We have occasionally seen teams devoting a sep-
arate diagram to the contents of a specific class, giving them

270

more freedom in specifying and manipulating its members.
Some teams even created bins within the representation of a
class into which members were sorted, effectively creating
another level of abstraction within the class.

5. Results: Representing heterogeneous
information

In the previous section we focused primarily on individual
diagrams that diverge from UML notation or use alternate
representations. Individual diagrams, however, tell only part
of the story. As the teams’ understanding of the problem
and solution evolves, their knowledge and designs consists
of different types of information. To fully understand how
designers represent this designs, we must investigate how
they deal with this heterogeneity.

5.1 Using independent diagrams
Since software designs cover multiple facets like struc-
ture and behavior, two-dimensional notational standards
like UML typically consist of multiple diagram types [14].
The UML standard dictates that each diagram will use the
notation of exactly one diagram type, and restricts the use of
foreign annotations. These restrictions are usually followed
in formal design documents, and most CASE tools enforce
them by providing a separate drawing canvas for each dia-
gram, and offering only the drawing primitives of the chosen
diagram type.

DesignFest teams, however, use physical mediums and
are not forced to produce a formal design document. They
are therefore free to violate this restriction. Nevertheless, it
appears that initially they did try to adhere to the standard,

The ability to increase the spatial proximity between di-
agrams, which is relatively straightforward with paper, ap-
pears to aid teams in coping with the heterogeneous nature
of the design. For example, in the earlier example of team E
which was working on the medical system (Fig. 2), they had
to consider the parts of the user interface visible to the user,
as well as the activities behind the scenes. This lead them to
work concurrently on the sequence diagram and the UI dia-
gram, which were placed on separate but adjacent canvases.

When smaller diagrams were required, and the use of sep-
arate large canvases for each diagram was impractical, teams
appeared to relax the restriction a little, allowing diagrams
of different types to reside on the same canvas. For example,
we have seen team E using the area below the architectural
diagram to create the UI diagram, in order to conserve space.

Teams may also intentionally bring multiple small dia-
grams together onto the same canvas in order to increase lo-
cality. In the earlier example of team A’s behavioral model
(Fig. 3), the exploration of a scenario resulted in multiple ar-
tifacts. While each artifact serves a different role, it must be
interpreted in the context of the others, and kept consistent
with them, thus benefiting from increased locality. A similar
multiplicity, involving a sequence diagram and a more com-

plex map of the production line, appeared when the team
later explored a more elaborate scenario.

5.2 Combining diagrams
While teams generally tried to keep diagrams of different
types separate, they occasionally violated UML practices by
combining information from different diagram types into a
single artifact. This typically involved combining behavioral
and structural information.

For example, team F devoted an entire canvas to the meth-
ods of a single business object (Fig. 8(a)), in a manner sim-
ilar to a class diagram, but in addition to listing the method
signatures, they also specified implementation details which
have no place in such diagrams according to the standard.
We observed a similar phenomenon in our 2006 validation
study, when a team working on a tournament management
software textually elaborated the steps of a use case, and
added class-diagram elements to represent related entities
(Fig. 8(b)). In both cases, the added information is closely
coupled to the context of the primary diagram type.

(a) Implementations steps
in a class diagram

(b) Class diagrams in
use-case steps

(c) Architecture in
class diagram form

Figure 8. Combining structure and behavior

In addition, we frequently observed teams augment-
ing UML class diagrams with indications of control- and
data- flows. For example, in the earlier example of the evolv-
ing class diagram by team E from Fig. 2(d), the team cre-
ated an output entity for a Treatment report and added
a line from the Session class to represent the flow of data
used to create it. Similarly, the three outgoing edges from
the Treatment object in the data model created by team G
from Fig. 5(b) appear to represent some form of control or
data flow.

One team in the 2005 study used class diagram notation to
represent the system architecture and the interactions within
it, as depicted in Fig. 8(c). Other teams introduced external
systems and storage mediums into standard class diagram.
For example, Team A was creating a class diagram and
discussing how the Simulator class could be configured.
They added a configuration file and a class for loading it, and
then used arrows to model the flow of data from the file to the
simulator via the loader class (Fig. 9(a)). This hybridization
of class structure and data flow is apparently not accidental,

271

as it was repeated in a subsequent finalized version of the
diagram (Fig. 9(b)).

(a) Initial diagram (b) Later diagram

Figure 9. External elements in class diagrams by team A

By combining diagrams or introducing foreign elements,
teams increase the locality of information, while reducing
the clutter, effort, and redundancy that stems from the use
of independent diagrams. While these are tangible benefits,
this behavior appears to have a more fundamental motiva-
tion that is rooted in how designers think about the system
and its components. Early design discussions typically re-
volved around objects, rather than classes, and referred to
their structural and behavioral properties in ways that cannot
easily be disentangled. While notations that dictate a sepa-
ration of these facets offer ways to accurately model the de-
tails of each facet without interference from the other, this
has limited benefit in these early stages, while the costs of
forcing a disentanglement may be significant.

5.3 Introducing peripheral information into diagrams
The tendency to increase the locality of information in the
diagram is also evident from the ad-hoc integration of con-
crete examples, details, and instantiations into the diagram,
rather than placement in external documents or use of anno-
tation standards.

The UML standard, especially as implemented in CASE
tools, accommodates peripheral information only in spe-
cially marked “notes” that lie in proximity to- or in di-
rect connection with- diagram elements; these constitute a
semantically- and visually- separate annotation layer. The
last example shows that in collaborative work, the bound-
aries are not as clear, at least visually: the configuration file
with its proposed format in Fig. 9(b) looks at first like an
integral part of the diagram. Similarly, as team B was work-
ing on the image shop problem, they integrated examples of
images, metainfo types, and order states into the class dia-
gram (Fig. 10(a)), even though it appears that these were not
intended to eventually become classes.

Concrete examples, not always textual, were often added
in an ad-hoc manner while discussing a recent idea or ad-

(a) Class diagram by team B (b) Sample record by team C

Figure 10. Integrating examples into diagrams

dition. For instance, during the initial discussion about the
configuration files, a member of team A wrote a concrete
example of its format on the top of the page (Fig. 9(a)). Sim-
ilarly, in response to questions about security, a member of
team C drew a small incomplete class diagram (Fig. 10(b)).
As more questions were raised about the data relations, he
added a sample record next to it.

While examples were typically placed on the same canvas
as the entities they refer to, we saw limited spatial proximity
or explicit connections between them within the canvas. For
instance, the data format appearing at the top of Fig. 9(a)
is visibly remote from the configuration file at the bottom
of the figure. In fact, external observers might consider it
unrelated to the diagram, or relate it to the methods of the
controller as both use a distinct color. It appears that ex-
plicit proximity or connection, as practiced by UML, was
not necessary since the example was given in a specific con-
text. When creating documentation-oriented artifacts, teams
appeared to explicitly capture these associations, as is evi-
dent by the relocation of the format into the configuration
file (Fig. 9(b)).

We note that important context-sensitive design informa-
tion is not always fully captured in writing. It may some-
times be captured as more of a placeholder or reminder of
other information, and be difficult to interpret without the
contextual information. For example, only meeting partici-
pants will recognize that the annotations on the methods of
the simulator in Fig. 9(a) convey that some methods are pri-
vate while others correspond to a certain scenario. Similarly,
the meaning of the crosses or the arrows on the edges in
the earlier example of Fig. 5(b) is unclear but likely denotes
some concept discussed in the session.

Worse yet, many notions and ideas in the course of dis-
cussion are not expressed with permanent visual markings,
but rather created with hand movements or even sketched in
the air or with a capped pen over the board. All evidence
of these gestures is lost in the final diagram, although they
potentially convey important annotations and examples. De-
signers often appeared to use this mode of communication
to avoid cluttering the paper, so it is possible that interaction
would have been different over a dry-erase whiteboard or an

272

electronic medium. Nevertheless, this behavior demonstrates
that pertinent design information may not be explicitly cap-
tured in an artifact but rather expressed in its context.

6. Results: Dependencies between diagrams
The results presented so far show that even when teams are
given freedom in their choice of representation, their designs
are still dispersed over multiple diagrams. In this section
we focus on the dependencies between these diagrams, how
they change over time, and how teams cope with them.

6.1 Diagram evolution across canvases
In examining the representations of individual artifacts, we
saw diagrams evolve and change their type or focus in re-
sponse to ad-hoc design needs. As the diagram becomes
more visually dense, however, it can no longer evolve “in
place”. Especially when using physical mediums, larger seg-
ments cannot be manipulated with ease, while striking out
contents is detrimental to the diagram’s aesthetics and may
overload short-term memory if material is recreated. Thus,
and as we have seen in our preliminary study [10], a single
design or final diagram can sometimes evolve over several
versions, each on a different canvas.

The model of continuous evolution towards complete UML
described in the literature [5, 9, 28] implies a monotonically
increasing shift towards completeness in content and nota-
tion. When the evolution is not in-place, this model implies
that each new version should convey at least the same infor-
mation as its predecessor (except for intentional revisions),
thus rendering all previous versions redundant. However, re-
producing the contents requires a significant menial effort,
which designers are likely to try and minimize. An issue of
significant concern, therefore, is whether they would per-
form this menial task, or spread the design over multiple
incomplete versions, potentially leading to a situation where
the final version might not stand on its own?

Let us consider one such situation, occurring as team E
continued working on the CD for its medical information
system (Fig. 2(d)). As a result of the process by which the
diagram evolved, it has become quite cluttered, with key
entities, such as Patient, still represented as forms rather
than as classes.

Craig described the diagram as ‘a mess’ and sug-
gested that they clean it up; someone suggested summarizing
and Craig agreed, saying they should also capture the rela-
tions. They proceeded to create a new diagram with a clearer
and more spacious layout. It began as an entity-relation dia-
gram, but became a class diagram as inheritance was added
once again. In creating the new diagram, the team fell into
a pattern, depicted in Fig. 11: Craig would turn his body or
walk towards the original diagram and identify an impor-
tant entity or relation. A discussion would ensue, followed
by rendering a version on the new diagram, after which the
pattern repeated itself.

Figure 11. Team E recreating the data model

Figure 12. Revised data model by team E

The final version of the diagram, depicted on the left can-
vas of Fig. 12, conforms with prior research which suggests
that artifacts are often recreated with equivalent content to
improve aesthetics or to migrate into an electronic tool [6,8],
or with less content, to highlight specific details [9]. How-
ever, our preliminary study [10] suggested that the mundane
activity of recreating artifacts serves not only aesthetic pur-
poses, but also offers a chance to inspect, reconsider, and
improve past decisions, resulting in different content. What,
then, is the relation between the old and new diagrams in
the work of team E, and to what degree are aesthetics the
primary difference between them?

As cleanup progressed with elements transferred to the
new diagram, certain decisions were revisited or expanded.
For example, at the end of a long discussion, the one-to-
many relation of Responsibility between Therapist

and Session from the original diagram became a many-to-
many relation between Therapist and Treatment plan

in the new one, and received several associated proper-
ties. Afterwards, the team created a relation between Plan

and Appointment to indicate that a plan can consist of
both appointments and sessions rather than solely of the
more specific sessions. Later, the flow arrow from Session

to Treatment report was replaced by a one-to-one rela-
tion. A discussion on a reporting infrastructure ensued, and
though never finished, a general Query class was added to
represent this functionality.

This example offers anecdotal evidence that designers
may conserve effort by avoiding the replication of some

273

pertinent information, such as the fields of the Treatment
plan class, to the new diagram. Grasping the complete de-
sign thus requires aggregating information from both ver-
sions, which is made difficult by the differences between
them. It is also just one of the many situations we encoun-
tered in which substantial and often conflicting differences
exist between the earlier version of the artifact and the re-
vised one. The difference may not be noticed without careful
comparison of both diagrams. Determining the final decision
would require knowledge of which diagram was newer, and
determining the rationale behind them involves recalling the
discussions at the time of the transition.

Many diagrams evolved through more than two revisions.
In general, relatively early after teams began working on a
new version, they seemed to determine the magnitude of dif-
ferences from the previous version. When it appeared that
only minimal changes would be necessary, they tended to
split into smaller groups and produce an aesthetic and com-
plete finalized version. Otherwise, the team remained cohe-
sive, and less attention was paid to completeness and aes-
thetics, perhaps in anticipation of yet another revision. Nev-
ertheless, the early determination was not always accurate,
resulting in significant decisions being made at the subgroup
or individual level.

We note that the two designers using CASE tools to cap-
ture a finalized version of the work of their teams on-the-fly
also made frequent individual decisions, which occasionally
even conflicted with those of the team. These designers were
immersed in their personal devices and thus lost touch with
their group’s focus. In addition, the speed at which the tools
allowed them to capture decisions appeared to further draw
them away from the slower and more collaborative activity
of their peers. Further study is necessary to assess whether
personal devices are constructive or detrimental to collo-
cated collaborative OOD.

6.2 Noncontiguous artifact evolution
The previous example demonstrated a localized and contigu-
ous evolution, from one version of the artifact of focus to
another version of the same artifact. Earlier, we have seen
interweaving of work on multiple diagrams which evolve
together, as when team E was creating the data model of
Fig. 2(a) while working on the sequence diagram, or when
team A was working on the behavioral model using multiple
representations (Fig. 3). In these situations, there was still a
locality in time and space and no additional artifacts were
used or changed in the interim.

Such locality, however, is not always the case since, as we
have seen, ad-hoc needs often divert discussions in different
directions. Timelines constructed for the observed sessions
show that teams tended to work for a while on one primary
artifact and then shifted their attention to another. An arti-
fact may be abandoned at some point, only to be recalled at
a later point and be discussed, referenced, copied, or contin-
ued, on the same canvas or on a different one.

Team A was working on the class diagram of Fig. 9(a),
which was still located on the flipchart. In the course of
one long discussion, the team’s assumptions came up, and
the focus changed to a list of assumptions posted earlier
on a different posterboard. After adding assumptions, they
came back to the CD for another ten minutes, after which
they flipped the chart to an earlier unrelated diagram, and
worked on it for a while, occasionally also working on the
assumptions list. After returning to the CD, they began mak-
ing the changes in green (controller methods, data format,
and markings near simulator methods). They posted the page
and turned to working on scenarios for an hour. Only to-
wards the end of the session did they begin creating the re-
vised version of Fig. 9(b).

This example shows that individual diagrams do not
evolve in a vacuum. Instead, each change takes place in the
context of the current state of the design at that time, which
could be captured in artifacts that share no obvious con-
nections. For example, certain design decisions were made
in the context of the original assumptions list, while others
were made in the context of the new ones. The artifacts do
not capture these temporal dependencies, potentially pre-
senting a significant challenge for the eventual interpretation
of the meeting products.

6.3 Dependencies on multiple diagrams
The network of dependencies between artifacts is further
complicated by the flow of design information from multiple
sources, typically earlier diagrams, into a single “sink”, often
the current artifact of focus.

Having finished discussing reports, the E team turned
to the relations between the entities representing actors in
the system. They referred to a small diagram, created very
early in the session, which described inheritance relations
among User entities, including ones that did not appear in
the original diagram of Fig. 2(d). These entities and rela-
tions were then copied into a separate page, and data car-
dinality connections were added. As can be seen in Fig. 12,
this diagram was then placed adjacently to the right of the
main diagram and a connection was made, effectively inte-
grating the new part into the main diagram.

The additions to the class diagram are compliant with UML,
but much of the design rationale behind them lies in the con-
text of the differences from the original hierarchy, and their
integration into the larger diagram.

(a) (b) (c) (d)

Figure 13. Team E building an architectural model

274

Another example of how multiple artifacts are used, inte-
grated, and discussed, occurs towards the end of the E team’s
session:

With time running out, the team decided to capture the
high-level architecture of their system, which they initially
abandoned very early in the session. In constructing this
new diagram, they had prolonged discussions and referred
to several artifacts, shown in Fig. 13, including: (a) a sim-
ple model of client and server responsibilities, (b) the se-
quence diagram, (c) the architectural sketch on the same
canvas as the discarded original model, and (d) the problem-
specification document with its notes. The resulting diagram
adds little beyond the original sketch, but many architectural
decisions were made verbally in the context of the referenced
artifacts but simply not written down as time ran out.

The above examples show that even though individuals
maintain much design knowledge in their heads, and could
implicitly apply it to the current diagram, they instead ex-
plicitly reference it in existing materials. A likely explana-
tion for this phenomenon is the need to ground the knowl-
edge and offer context to the upcoming discussion, while
ensuring that that it is shared by all participants. In addition,
since we frequently saw individuals examining artifacts be-
fore speaking, it is possible that peer pressure leads design-
ers to “check their sources” before contributing.

6.4 Coping with multiple artifacts
The dependencies between design artifacts are a known chal-
lenge to all designers, but may be particularly problematic
for collaborative teams working with physical mediums. The
need to make artifacts visible to everyone requires the use of
large shared drawing spaces and results in the creation of
large scale artifacts. The team’s workspace is usually lim-
ited, allowing them to keep only a limited working subset
visible at all times [10]. Even the artifacts in this workspace
are typically spread around the design environment, prevent-
ing designers from seeing all of them at once.

For these reasons, when teams needed to continuously
focus on multiple artifacts, they tried to increase the physical
locality. If the diagrams were not on the same canvas, then
they were moved around and placed next to each other. For
instance, we saw team E place the UI and sequence diagrams
next to one another, as elements in the former were entry
points into the latter. Similarly, we saw team F place lists of
actors and activities next to one another, and compose them
into a use-case diagram (Fig. 4).

When the need to focus on multiple artifacts was tran-
sient, diagrams were often held in proximity without be-
ing physically attached. This was especially common when
recreating a new version of a diagram from an earlier model
or a personal note (Fig. 14), after which the original was of-
ten removed from the working set. There was limited need
to affix the diagrams, since the old version could always
be brought back if necessary (e.g., Fig. 13(c)). There are
situations, however, where diagrams were held in proxim-

(a) Team C (b) Team F

Figure 14. Holding diagrams to increase locality

ity in the course of conveying ideas. For example, when
team F worked on a scenario involving user actions, a de-
signer would often hold up a sketch of a web form and a
sequence diagram, demonstrate a user action on some wid-
get, and then continue to follow the sequence of actions in
the sequence diagram until the output was produced back on
the form. In these situations, no permanent evidence was left
of the connection between the artifacts.

As we have seen, the content of one artifact can affect the
discussion or content of another, even if they do not share
mutual entities. While individuals may possess the relevant
knowledge in their minds, they appear to reexamine the arti-
facts before speaking, and later refer to them explicitly. Un-
fortunately, the effort and time involved in moving and ar-
ranging artifacts around the workspace prohibited the estab-
lishment of physical proximity in many of these cases, and
forced teams to repeatedly switch their attention between
different parts of the design area. This was particularly ev-
ident for shorter references to materials posted around the
work area, and especially when individuals, rather than the
entire team, were considering the materials or referring to
their personal notes or the given documentation. The only
physical manifestation of these public references were ges-
tures and pointing, while the only clue of private references
was typically a glance or a change in head position.

Nevertheless, when the entire team needed to join the fo-
cus of an individual, gestures and gaze tracing were key [10].
Gaze tracing also helped individuals remain oriented on the
focus of the team. For instance, if the participant opposite
the board in Fig. 15 was distracted, he could interpolate the
gazes of his four peers to identify which of the three dia-
grams they were focused on.

7. Discussion
The collected body of data from three years of DesignFest
events contains numerous examples of representations used
in collaborative OOD, many of which significantly diverge
from UML, and of dependencies between the diagrams.
However, our goal was not to merely confirm the casual ob-
servations and everyday knowledge of their existence, nor
was it to try to catalogue them or to elicit quantitative in-

275

Figure 15. Gaze can be traced to determine group focus

formation, which would have little use in these restricted
and unique small settings. Rather, in initiating this study, we
set out to understand the representations used in collabora-
tive OOD, the reasons for their creation and their implica-
tions for tools. In the preceding result sections, we presented
representative examples of behaviors that, we believe, shed
much light on these questions.

When we set out to explore the representations, we ex-
pected artifacts to primarily be examples of incomplete dia-
grams with accidental freehand notations that could eventu-
ally be evolved into complete UML models, as described in
the literature [9]. Perhaps because of the less restrictive set-
tings of our study, the actual data revealed surprising results:
While we did see many incomplete diagrams, the representa-
tions ended up being too varied to fall under any simple clas-
sification. Most importantly, they appeared deliberate rather
than accidental.

We have seen many instances in which the divergent rep-
resentation could not simply be dismissed as early forms
of UML, or as independent and unrelated freehand anno-
tations. Instead, there appear to be situations in which teams
create artifacts that convey the same data as proper UML
diagrams, but make use of improvised notations to quickly
solve immediate problems or capture insights before they are
lost. One path for the evolution of such representations oc-
curred when teams began with a less structured representa-
tion, and then introduced additional notations and structure.
A second path is when they chose a representation that could
offer more structure or cover more facets of the design than
a standard UML diagram.

In addition, rather than create the portfolio of visually
independent diagrams freqently seen in design documents
and CASE tool models, teams deliberately created a large,
interdependent and seemingly disorganized array of arti-
facts. Some of these combined multiple diagrams, types, and
annotations, while others depended on or overlapped with
other artifacts. In addition, there is a complex network of de-
pendencies, connections, and locality between the artifacts,
many of them transient and context-sensitive, and in some
cases subtle. Some of these connections are spatial, involv-
ing the location of the artifacts at specific times, while oth-

ers are temporal or contextual, involving their state or use at
given times

Let us now try to explain these results and discuss their
implications.

7.1 Ad-hoc choice of representation
Existing explanations for the divergence between design
sketches and standards such as UML tend to follow two
themes. First, early artifacts are mostly incomplete, and can
evolve into conformance with the formalism with sufficient
effort and guidance [8, 15]. Second, there are criticisms of
the standard itself, such as its power of expression, elegance,
its level of restriction, or its approach to organizing data, and
thus teams might be expected to “rebel” against it or at least
adopt additional notations. We shall relate to the first theme
now, and discuss the second at the end of this section,

Based on repeated close studies of the videotaped evi-
dence, of which pertinent examples were presented in this
paper, we propose an explanation for the choice of repre-
sentation, and the divergence in notation in particular, that
is more fundamental and less dependent on the specifics of
formalism and settings. Namely, we suggest that while teams
are aware of the need to convey their design for future use,
and will explicitly work towards that goal in later and visu-
ally distinct phases of the design, that is not their primary
motivation and concern.

Rather, in the creative phases of the design, both the de-
sign process and the representations used to capture it are
structured as an ad-hoc response to the team’s unfolding un-
derstanding of their problem and solution. The ad-hoc ap-
proach allows teams to capture the results of their problem-
solving process in whatever order that it happens to take, and
tackle issues in the order they choose, often using sketches
as a short-term memory.

In respect to representation, ad-hoc choice serves sev-
eral purposes. One obvious benefit is in allowing teams to
minimize the costs in distraction and physical effort that
arise from visual activity and in particular from adhering
to a complex notational standard. Like previous researchers,
we saw teams filtering out unrelated content [8] and skip-
ping aesthetic polishing [5, 24]. We also saw them avoid-
ing the menial chore of copying all content when creating a
new version of a diagram, effectively spreading the design
across several versions. In addition, we have frequently seen
participants using gestures and ”air-pens” rather than actu-
ally drawing, to avoid the associated costs of writing and
subsequently erasing materials. This was also evident when
teams used small and portable canvases or sticky notes that
could be temporarily attached to larger sheets and moved
about [10].

A second related benefit is that it enables them to local-
ize different types of information related to an issue, thus
reducing physical clutter and memory load. Teams tended
to increase the physical locality of relevant materials: they
shuffled canvases around or placed related diagrams on the

276

same canvas, and even integrated different materials into the
same diagram. However, this increase in locality is not only
physical; it also extends to a reliance on individual and group
memory, on the immediate context, and on alternate commu-
nication mediums such as speech or gesturing. This locality
acts as a substitute for the need for specific and well-defined
references and notations.

A third, less obvious but more fundamental, purpose of
ad-hoc choice is that information could be represented at lev-
els of completeness, abstraction, structure, and organization
that are best adapted to the team’s current and anticipated
needs. In some cases, the available representations could not
match the level of structure at which the teams wanted to
work. In other cases, by avoiding an early commitment to
a particular representation, teams were able to allow their
representation to evolve in ways not possible with a fixed
representation.

7.2 Impact on products
As we have repeatedly seen throughout this paper, the pri-
ority given to creative design and the attendance to ad-hoc
needs comes at a cost: teams create an unedited collection
of artifacts with certain dependencies, inconsistencies and
ambiguous notations, that may be less comprehensible and
useful to outsiders, thus lowering their potential as docu-
mentation or implementation artifacts. This poses a prob-
lem since sketches as well as archival-quality artifacts from
design meetings are subsequently used by developers, who
need to understand decisions made in the design meeting [6].
They also frequently need to understand the rationale behind
these decisions [18], which is often not documented explic-
itly [20]. Furthermore, problems in interpreting UML dia-
grams have been implicated in some software defects [19].

Even some of the explicitly-recreated and finalized dia-
grams that we have seen will present a challenge to external
observers, due to ad-hoc annotations, foreign elements, and
the differences between versions. For instance, a hypothet-
ical external observer will be challenged to understand the
annotations on the methods of Fig. 9(b), or where the status
codes fit. Understanding the complete solution of team E,
such as its data model of Fig. 12, will require him to lo-
cate the earlier versions, such as Fig. 2(d), identify the dif-
ferences, and elicit some details from the original. Interpret-
ing all these representations would require familiarity with
the context of their creation.

7.3 Order of evolution
Throughout all observed sessions, it was evident that designs
and artifacts do not evolve on a single continuous path of
monotonically-increasing completeness. Rather, in response
to ad-hoc needs, the designs and artifacts evolve on multiple
paths that are interwoven and sometimes merged. Every ar-
tifact or idea may be abandoned, only to be recalled at a later
point, and be discussed, referenced, copied, or continued on
the same canvas or on a different one.

The interwoven and noncontiguous order of work presents
several challenges. During the session, it challenges the team
members’ memory, individually and as a group, and they
spend much effort attempting to recall and recap past dis-
cussions and decisions. Physically, it also increases clutter
and confusion as the team struggles to maintain a limited
working set of diagrams, requiring them to search, move,
and flip diagrams, and depreciating the value of spatial cues
which are essential to locating material [10]. The impact
also persists after the session has ended, since the loss of
temporal order can present challenges to interpreting the
final diagrams.

For instance, because team A made changes to its posted
list of assumptions while working on the diagram of Fig. 9(a),
a reader examining earlier artifacts might mistakenly assume
that all listed assumptions were made at the same time at the
beginning of the session, and thus interpret those artifacts in
this mistaken context.

We note that identifying the connections and interweav-
ings between artifacts is also challenging. Access to artifacts
can vary in length and impact, from longer references that in-
volve copying, making changes, or even a return of focus and
a continuation of discussion drawing, to short references, ac-
knowledged only in glance and speech. Individual designers
leverage the extreme collocation to maintain awareness of
what others are doing and what they are focused on. As could
be expected, we have seen coordination problems arise when
teams split into subgroups [10].

The nonlinear path of the design evolution also exacer-
bates the problem of understanding the results, as it is diffi-
cult to interpret the resulting artifacts without understanding
how and why they evolved from the originals. While the de-
sign rationale is rooted in the context of both versions of the
artifact, it may only be captured in the discussion itself, and
the difference between the artifacts may be the only hint that
such a discussion ever took place. In addition, subtle refer-
ences to artifacts and temporal clues that may have important
impact are not captured.

7.4 Use of UML as an idiom
We conclude our discussion of the results by touching on the
use of UML.

Although our presentation focused on divergences from
UML, it is important to note that the representations of most
artifacts are still based on that formalism and often comply
with it. This is particularly evident in finalized versions cre-
ated for presentation: UML is apparently considered appro-
priate for documenting and communicating designs.

Testimony to its communicative qualities is offered by the
fact that some of its notations become idioms that are applied
almost automatically, even outside the expected context. For
example, the inheritance notation of class diagrams is so well
recognized that we have frequently seen it used to indicate
generalization and specialization relations among other en-
tities, such as actors in use-case diagrams. The use of inher-

277

itance to convey examples in the class diagram of Fig. 10(a)
is another possible example of this phenomenon. These id-
ioms even make their way into architectural diagrams. For
example, in a freeform architecture diagram created by an-
other team working on the image shop problem (Fig. 8(c)),
we can see the UML notations for inheritance and aggrega-
tion used in a diagram that primarily conveys components
and the interaction between them.

In fact, after examining the plethora of diagrams in three
years of DesignFest events, we raise the possibility that
the use of UML in the earlier and more creative stages of
collaborative OOD, before final diagrams are created, is not
a real use of the standard or of a consistent subset. Rather,
it appears to be a use of freeform notations that borrows and
utilizes several well-recognized UML constructs as idioms.
This hypothesis may offer some explanation for the use of
only a handful of UML diagram types and of a very limited
subset of their available primitives, even though many of the
participants were very experienced UML modelers.

When not using the idiomatic constructs, representations
tended to devolve into the box-and-arrow diagrams observed
in non-OO settings [6]. This presented only a limited diffi-
culty during the meeting, because interpretation was implied
by the context of the conversation, but presents a problem
for external readers who lack syntactic or contextual cues to
interpret them.

Finally, we want to clarify that we do not consider the
findings of this paper to be indicative of specific weaknesses
of the UML standard compared to other potential notations.
Our observations are not merely the result of studying a par-
ticularly problematic formalism: While they highlight inad-
equacies of UML in supporting collaborative design, UML
is primarily a specification- and documentation- oriented no-
tational standard.

The important implication of our observations is that it is
not clear that any current or future fixed standard with these
goals would be flexible enough: The same factors and ad-
hoc needs will likely lead designers to improvise around its
restrictions as well. Thus, instead of trying to improve col-
laborative OOD by attempting to find a perfect formalism,
perhaps an investment in tools that are independent of spe-
cific notations may be more rewarding.

8. Implications for design-support tools
Our discussion so far has focused on understanding the rep-
resentations used in collaborative OOD. We shall now turn
to identifying implications for design-support tools.

8.1 Utilizing large displays
As described in Sec. 2.3, most existing efforts for supporting
collaborative OOD focus on using electronic whiteboards
as shared drawing spaces, typically using sketch recognition
to identify primitives of the notation. These primarily focus
on specific UML diagram types, though a recent tablet-

based tool [15] supports customizable and domain-specific
notations.

Although there is limited information on these tools’ suc-
cess in the field, our observations present two potential dif-
ficulties to real-world deployment. First, designers employ
a range of improvised and generalized notations that may
be difficult to distinguish and associate with the specific no-
tations of a fixed standard with adequate confidence. Sec-
ond, designers rely on contextual information and on alter-
nate communication mediums, not available to sketch rec-
ognizers, to complement and help interpret the improvised
notations.

While automatic recognition is useful, it appears oriented
primarily towards the creation of archival-quality artifacts
from the meeting. What other needs do teams have in order
to come up with the design in the first place?

Our earlier study of the design environment [10] showed
that teams struggle to maintain a working set of visible ar-
tifacts within the limited working space, and invest signifi-
cant effort in finding and retrieving diagrams after they were
removed from that set. The observations in this paper also
demonstrated that teams tend to increase the physical local-
ity of related information, placing related information adja-
cently or embedding canvases within one another. The costs
associated with physical mediums prevented them from do-
ing so in all applicable situations, especially for short ref-
erences, and they often needed to switch attention between
different areas of the workspace.

Large electronic sketching surfaces offer the potential
for alleviating these problems by creating a virtual drawing
space that is much greater and more flexible than any phys-
ical canvas [12]. With appropriate interaction techniques,
they can help teams rapidly identify artifacts in this space
and bring them into physical proximity within the limited
physical viewport. Multiscale interfaces [13] can help over-
come the inherent resolution limitations of these displays. At
present, we are not aware of any whiteboard based tool that
implements this functionality.

These devices can also be configured to track and log
all drawing activities. This can be used to offer an undo
functionality, which may lure designers away from “drawing
in the air” and leave records of the removed information,
typically examples. This record could also be used to provide
temporal information which can help in the interpretation of
diagrams.

Large displays may also eventually play a role in meeting
the increasingly important challenge of globally-distributed
software design. Distributed work in general, however,
presents unique challenges, heavily studied in the literature,
which arise from from the loss of physical affordances. Else-
where [10], we discuss additional challenges specific to dis-
tributed OOD, based on our preliminary study, and outline
additional requirements for supporting the design environ-
ment under these settings, with respect to large displays.

278

8.2 Preserving context
While most current work and some of our recommendations
focus on on the exciting potential of large displays, we must
not lock ourselves to that technology. A long time may pass
before such devices are ubiquitous. Even if the technology
was available in specially equipped meeting rooms, many
design collaborations are spontaneous, short-lived, and take
place in locations such as personal offices [6]. What impli-
cations, then, does this study have for designers working in
everyday settings?

Perhaps the most important contribution of our findings
is in highlighting the critical role that contextual cues, mem-
ory, and alternate communication mediums, play in the de-
sign process. This information, important during the session,
is particularly crucial for a subsequent understanding of the
designs and their rationale. At present, casual observation
suggests that most teams do little to preserve this informa-
tion, and at best preserve only the final diagrams after the
meeting has ended. However, it is not always possible to
foresee in advance what artifacts will be important in the
future, and in some cases this will only be recognized after
several reproductions [6].

Therefore, the “take home message” for all designers is
to try and preserve as much of this information as possible.
We believe that such investment may often be preferable to
attempts to create a final and aesthetic version of the artifacts
during the meeting The question, of course, is how to best
capture this information.

In our efforts to understand the diagrams, we made use
of various information sources available to us. In terms of
visual information, perhaps the most useful resource, which
was also the easiest to obtain, were the photos taken during
the session, which captured intermediate states of the dia-
grams and their spatial location in relation to other artifacts.
These helped us understand the evolution of each diagram
and of the design as a whole, as we could compare diagrams
over time; in some cases, they revealed important material
which was later erased. With the ubiquity of digital cameras,
most designers should be able to take these photos even in
spontaneous meetings.

Unfortunately, unless photos are taken frequently, im-
portant details may be lost, including: concurrent work on
multiple diagrams, short references, or an example that is
quickly erased. In addition, photos cannot capture gestures,
“drawing in the air”, and the glances that establish reference.
This information is particularly important if a voice record-
ing or transcript of the meeting is captured, since many ver-
bal references rely on a specific visual context, such as what
the designer has just looked at.

In our study, only the video stream captured enough of
this evidence, thanks to its continuous nature. At present,
video may be the most comprehensive means of capturing
contextual details from collocated collaboration, and may
therefore be the safest approach for teams seeking to min-

imize the risk of losing critical information. However, al-
though its effectiveness for requirements engineering has re-
cently been demonstrated [7], the use of video in software
design remains controversial.

One obvious concern is the feasibility of recording all
collaborative situations. However, since the goal of the video
is primarily to capture gestures and timing information, and
offer context to verbal interaction, even low-fidelity streams
are sufficient. With decreasing storage costs and the avail-
ability of webcams and video-capable digital cameras, we
believe this footage can be captured inexpensively even in
spontaneous meetings.

A more fundamental concern regarding video is the chal-
lenge of locating information within such an unstructured
stream. In our experience, the random access and rapid skim-
ming capabilities afforded by digital video are extremely
helpful in pinpointing relevant sections efficiently without
watching the entire stream. Video can thus be considered as
a form of “insurance” in case specific information may be
sought in the future.

In the future, advances in video analysis, or perhaps cor-
related data from instrumented electronic whiteboards, may
provide structure to this stream and offer new possibilities
such as the creation of useful summaries or aggregations of
context. For example, one could imagine a tool that could
help supply useful context for a confusing notation, by vi-
sually summarizing the set of actions that occurred imme-
diately prior to creation of the notation, or by highlighting
anything edited in close temporal proximity to the use of the
notation. Based on our results, it seems that finding a rich set
of techniques for capturing and displaying contextual infor-
mation is a potentially very rich research area.

We realize that some teams will not be able to use tech-
nological means to capture contextual information. To these
designers we can only suggest that they remain constantly
aware of the future interpretability and traceability of their
work, and try and preserve information in the diagrams
whenever possible. This does not have to mean an explicit
and costly documentation effort; it could be as simple as an-
notating some artifacts in the short pauses before switching
to another area.

9. Conclusions and future research
In this paper we presented observations that significantly im-
prove our understanding of the visual and physical man-
ifestations of collocated collaborative OOD. Our findings
demonstrated the tendency to choose representations and ar-
range visual artifacts to accommodate immediate needs, at a
cost for the subsequent use of the artifacts. This highlighted
the importance of supporting teams in managing artifacts
and in preserving pertinent contextual information. Further
study is necessary to ascertain whether our results generalize
to real world design settings. The network of implicit depen-

279

dencies between artifacts and their impact on the design also
appears to merit further detailed study.

Our current work focuses on finding means to preserve
contextual information from design and development activ-
ities which take place over electronic platforms, since these
can be monitored with existing technologies. We are in-
vestigating the potential use of episodic memory [25] as a
metaphor for representing accounts of these activities.

Acknowledgments
We would like to thank the organizers of the ACM Design-
Fest events at OOPSLA 2004, 2005 and 2006 for their assis-
tance in conducting this research, and the numerous partici-
pants for allowing us to observe and record their work.

The authors gratefully acknowledge support by NSF
grant IIS-0414698, as well as support from the Software
Industry Center and its sponsors, particularly the Alfred P.
Sloan Foundation as well as Accenture Technology Labs.
The first author was supported by an IBM PhD Fellowship.

References
[1] S. W. Ambler. The Object Primer - Agile Model-Driven

Development with UML 2.0. Cambridge University Press,
2003.

[2] A. Black. Visible planning on paper and on screen: The
impact of working medium on decision-making by novice
graphic designer. Behaviour and Information Technology,
9(4):283–296, 1990.

[3] N. Boulila. Group support for distributed collaborative
concurrent software modeling. In ASE ’04, pages 422–425.

[4] L. C. Briand, Y. Labiche, M. D. Penta, and H. D. Yan-Bondoc.
An experimental investigation of formality in UML-based
development. IEEE Transactions on Software Engineering,
31(10):833–849, 2005.

[5] Q. Chen, J. Grundy, and J. Hosking. An e-whiteboard
application to support early design-stage sketching of UML
diagrams. In IEEE Conference on Human-Centric Computing
(HCC’03), 2003.

[6] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s
go to the whiteboard: how and why software developers use
drawings. In CHI ’07, pages 557–566.

[7] O. Creighton, M. Ott, and B. Bruegge. Software cinema-
video-based requirements engineering. In RE ’06, pages
106–115.

[8] C. H. Damm, K. M. Hansen, and M. Thomsen. Tool
support for cooperative object-oriented design: gesture based
modelling on an electronic whiteboard. In CHI ’00, pages
518–525.

[9] C. H. Damm, K. M. Hansen, M. Thomsen, and M. Tyrsted.
Supporting several levels of restriction in the UML. In UML
’00, LNCS 2844, pages 396–409. Springer, 2000.

[10] U. Dekel. Supporting distributed software design meetings:
what can we learn from co-located meetings? In Workshop on
Human and Social Factors of Software Engineering (HSSE)
at ICSE’05, SIGSOFT Softw. Eng. Notes, 30(4):1–7, 2005.

[11] ACM DesignFest homepage.
http://designfest.acm.org.

[12] S. Elrod et al. Liveboard: a large interactive display
supporting group meetings, presentations, and remote
collaboration. In CHI ’92, pages 599–607.

[13] G. W. Furnas and B. B. Bederson. Space-scale diagrams:
understanding multiscale interfaces. In CHI ’95, pages 234–
241.

[14] J. Gil and S. Kent. Three dimensional software modelling. In
ICSE ’98, pages 105–114.

[15] J. Grundy and J. Hosking. Supporting generic sketching-
based input of diagrams in a domain-specific visual language
meta-tool. In ICSE ’07, pages 282–291.

[16] J. D. Herbsleb, H. A. Klein, G. Olson, H. Brunner, J. Olson,
and J. Harding. Object-oriented analysis and design in
software project teams. Human-Computer Interaction,
10(2):249–292, 1995.

[17] S. R. Klemmer et al. The designers’ outpost: a tangible
interface for collaborative web site. In UIST ’01, pages 1–10.

[18] A. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In ICSE ’07, pages
344–353.

[19] C. F. J. Lange and M. R. V. Chaudron. Effects of defects in
UML models: an experimental investigation. In ICSE ’06,
pages 401–411.

[20] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In ICSE ’06, pages
492–501.

[21] J. Lin, M. W. Newman, J. I. Hong, and J. A. Landay. Denim:
finding a tighter fit between tools and practice for web site
design. In CHI ’00, pages 510–517.

[22] A. Mehra, J. Grundy, and J. Hosking. Supporting collab-
orative software design with a plug-in, web services-based
architecture. In Workshop on Directions in Software Engi-
neering Environments (WoDiSEE) at ICSE ’04.

[23] Object Management Group. UML 2.0 specification.
[24] B. Plimmer and M. Apperley. Interacting with sketched

interface designs: an evaluation study. In CHI ’04, pages
1337–1340.

[25] D. L. Schacter and E. Tulving. What are the memory systems
of 1994? In D. L. Schacter and E. Tulving, editors, Memory
Systems, pages 2–38. MIT Press, Cambridge, MA, 1994.

[26] S. Tilley and S. Huang. A qualitative assessment of
the efficacy of UML diagrams as a form of graphical
documentation in aiding program understanding. In SIGDOC
’03, pages 184–191.

[27] W. Visser. Designing as construction of representations: A
dynamic viewpoint in cognitive design research. Human-
Computer Interaction, 21(1):103–152, 2006.

[28] J. Wu, T. Graham, and P. Smith. A study of collaboration
in software design. In 2003 International Symposium
on Empirical Software Engineering (ISESE ’03). IEEE
Computer Society, 2003.

[29] J. Wu and T. C. N. Graham. The software design board: A tool
supporting workstyle transitions in collaborative software
design. In LNCS 2844, pages 92–106. Springer, 2004.

280

