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ABSTRACT 
Computer science is necessary but not sufficient to understand and 
overcome the problems we face in software engineering. We need to 
understand not only the properties of the software itself, but also the 
limitations and competences humans bring to the engineering task. 
Rather than rely on commonsense notions, we need a deep and 
nuanced view of human capabilities in order to determine how to 
enhance them. I discuss what I regard as promising examples of 
cognitive and organizational theories and propose research 
directions to develop new ways of representing run-time behavior 
and ways of thinking about project coordination. I conclude with 
observations on creating an interdisciplinary culture. 

Categories and Subject Descriptors 
D.2,0 [General]  

General Terms 
Measurement, Experimentation, Theory. 

Keywords 
Coordination, behavioral science, interdisciplinary, 
multidisciplinary. 

1. INTRODUCTION 
Nearly two decades ago, Fred Brooks, in his classic “no silver 
bullet” paper [5] warned us that certain of the difficulties of building 
software systems derive from the essential nature of software, hence 
are unlikely to be overcome by any single breakthrough. In fact, the 
more deeply we understand the nature of software development, the 
more we begin to grasp its true difficulties. Brooks makes this point 
with an analogy to medicine: 

The first step toward the management of disease was 
replacement of demon theories and humours theories by 
the germ theory. That very step, the beginning of hope, 
in itself dashed all hopes of magical solutions [6] p. 181. 

I want to suggest in this talk that a deeper understanding of our own 
field leads us into the intersection of several scientific disciplines – 

an intellectual bramble that many of us would rather avoid than try 
to untangle.  

The history of germ theory provides an informative historical 
analog. Between the time that John Snow published the first 
convincing epidemiological evidence for germ theory (the famous 
study showing the spread of cholera from the Broad Street Pump) 
and the general acceptance of those conclusions, was about 80-100 
years [38]. The delay can be attributed to the entrenched, “common-
sense” view prevalent at the time, which held that diseases were 
caused by “foul emanations from soil, water and air” [36] p. 377. 
This view often led to helpful actions, such as its emphasis on 
general cleanliness. But it also posed serious dangers, as when it was 
proposed that in order to promote hygiene, the streets of London 
should be meticulously cleaned up, including all the human waste, 
with the offending materials to be dumped into the Thames [38]. 
Unfortunately, the Thames provided the city’s drinking water, so the 
proposal would have created an extremely effective channel for 
propagation of diseases like cholera and typhoid.  

As Brooks points out, the difference between folk medicine and 
medicine as we currently know it is a better understanding of the 
underlying mechanisms that produce the phenomena of interest. In 
software engineering, we generally rely on computer science to 
provide explanations in terms of these underlying mechanisms, and 
that is often precisely the right place to turn. We need not, for 
example, rely on folk wisdom about how well various algorithms 
will scale with the number of inputs. We can analyze the algorithms, 
and understand precisely why they scale differently. Pointing out the 
utility of computer science for software engineering is to belabor the 
obvious.  

The thesis of my talk, however, is that computer science is not 
enough. Neither is computer science plus common sense. We need 
not only to understand the properties and behavior of software, but 
also the behavior of software engineers, development teams, and 
organizations. The extraordinary complexity, conformance, 
changeability, and invisibility of software – the sources of its 
essential problems, according to Brooks [5] – severely challenge 
human capabilities. Understanding the underlying mechanisms in 
play as people tackle software engineering tasks – mechanisms 
rooted in human cognition, social practices, and culture – is critical 
to the progress of our field. 

2. BRAINS AND SOFTWARE 
The functional components of the human brain “were designed by 
natural selection to solve adaptive problems faced by our hunter-
gatherer ancestors” [8]. The match of such components to the tasks 
of software development is not always what one would hope. The 
human cognitive landscape has many islands of specific, highly-
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specialized and very powerful subsystems such as natural language 
processing [32] and visual processing [39]; yet tasks requiring far 
simpler forms of cognition, e.g., simple logic problems, are often 
performed very slowly and with many errors [15] because of a poor 
match with cognitive competences. 
Understanding how to optimally engage this collection of 
competences in the highly complex tasks of software design and 
implementation is an exercise in mapping novel tasks onto cognitive 
machinery designed for very different purposes. It often results in 
what we might call “cognitive mismatch.” For example, people tend 
to find the task of learning programming languages effortful, and 
most people never attempt it, or try then give up. On the other hand, 
nearly every intact human effortlessly performs the far more 
complex task of learning one or more natural languages, with no 
need for instruction or feedback, to an extremely high level of 
competence [32]. As a second example, it is well-known that small 
groups of people who spend time together naturally develop a 
“transactional memory” in which individuals specialize in storing 
and retrieving particular kinds of information so that the multi-
individual system functions as a retrieval device far more effectively 
than the sum of non-interacting individuals [26]. This process is 
badly disrupted in geographically distributed teams where typical 
face-to-face interactions, which provide the information from which 
the specializations are generated, typically do not happen [22].  
The overall point of this talk is that understanding how to do 
software engineering better requires a deepening of our 
understanding of 1) effective software engineering principles and 
practice, and 2) how these principles and practices line up against 
human cognitive, social, and cultural functioning. Current software 
engineering research, in my view, is making steady progress in the 
former, but constantly risks irrelevance as it neglects the realities of 
the latter. We tend to assume that humans can and will simply 
change in whatever ways are necessary. Human functioning is not 
nearly so malleable, however, and we ignore this fact to our great 
detriment.  
If this major point is correct, there should be many critical areas of 
software engineering in which we can make better use of human 
capabilities. In order to do this, we need theories that shed light on 
the underlying mechanisms as software tasks are mapped onto 
specific human competences. I will focus on two examples: naïve 
psychology and coordination.  

2.1 Naïve Psychology 
One often hears descriptions of software that are strangely 
anthropomorphic, describing, for example, what a component 
“knows” or is “trying” to do. In fact, Edsgar Dijkstra was so 
offended by the frequency of such talk that he suggested instituting a 
system of fines to stamp it out [12]. No one advocates or teaches this 
style of description, so why do people use it instead of the more 
precise vocabulary of computer science? 
Consider a team trying to understand the odd runtime behavior of a 
particular component (call it component A) in a very complex, 
distributed software system. Suddenly, someone says, “Ah, A thinks 
file foo is corrupted!” This insight explains the complex pattern of 
peculiar behavior, and everyone agrees quickly with the diagnosis. 
Consider, for a moment, the semantics of this statement. It carries 
very complex implications about the relation of the component and 
the file, alternative actions the component may engage in, ways that 
the component interprets state that relates to the file, and so on. 

Imagine trying to express the semantics fully in some other way, 
e.g., there is a Boolean field set to “false,” various components call 
methods that read this field, etc. Translation of the full import of the 
semantics of “knows,” without recourse to other anthropomorphic 
descriptions would be extremely long and difficult to understand, if 
it were possible in any practical sense at all. Talking about what a 
component “knows” is a very abstract description of system state 
that knits together, in a way instantly understood by others, many 
diverse system behaviors and internal states. 
It is not surprising that humans favor this form of description. When 
closely examined, it reflects very sophisticated reasoning about what 
“people” (or things treated anthropomorphically) believe, are trying 
to do, and the ways in which these relate to behavior. It is now well-
established that such reasoning is characteristic of a powerful 
cognitive subsystem that is highly specialized to navigate the 
complex human social world [28]. The course of development is 
increasingly understood [25], and the specific brain structures that 
are responsible for the capability have been identified [17, 34]. Poor 
functioning in these structures is linked with the syndrome of autism 
[1], in which people cannot interact socially, treating other people 
much as they do inanimate objects. 
There is fairly strong evidence that professional software engineers 
make very heavy use of this cognitive system in collaborative 
software engineering activities [21], and it is not clear that there is 
any other choice for interactions among people in real time. 
Different cognitive systems operate at different speeds. Working 
alone, one is free to use any system that is appropriate, operating at 
any speed that allows the task to fit within scheduling constraints. 
Collaborative work, on the other hand, is socially constrained to 
operate at a rapid pace. The naïve psychology system is perhaps the 
only powerful, fast cognitive system that is well-adapted to 
modeling runtime behavior. There may simply be no other 
straightforward way for groups of people to think collaboratively 
about runtime behavior in various scenarios, or to debug difficult 
problems in distributed systems. 
Although I have argued that the use of naïve psychology has 
advantages and may even be inevitable, I do not completely 
discount Dijkstra’s concerns. Suppose, for example, that the runtime 
component states cannot be accurately described in the vocabulary 
of naïve psychology? This would likely make runtime behavior very 
hard to understand, but even harder for people to talk about if using 
naïve psychological concepts. Or it might well be the case that 
recording the conclusions reached in collaborative sessions is very 
error prone, since it requires a translation from naïve psychological 
talk to some more standard representation.  
This line of thinking suggests several fruitful interdisciplinary 
research directions. One would be to work out the semantics of 
naïve psychology. This might make it possible, for example, to 
design components that can more accurately be described at runtime 
by statements about belief and desire, or even to assure that 
statements like “Component A believes proposition p” is atomically 
true or false for the component, i.e., it cannot fall into some 
inconsistent, hence confusing, state. Other work could seek to 
understand the contours of naïve psychology as applied to runtime 
components. One could, for example, design a series of experiments 
to determine when and to what extent the use of naïve psychological 
explanations can accurately describe runtime behavior, and the 
particular kinds of errors it generates. The long-term results could 
lead, for example, to new kinds of standard abstract representations 
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that are very powerful yet very simple to understand. It might also 
lead to practices or tools designed to recognize or prevent errors 
induced by the irresistible tendency to think anthropomorphically 
about programs. The conception of “naïve psychology” and its 
cognitive and neural basis forms a theoretical thread to tie this 
research program together. 
Naïve psychology, of course, is just one example, which I used to 
illustrate the point that human cognition exhibits unexpected 
properties, with very sharp gradients between complex tasks that can 
be performed effortlessly and relatively simple tasks that are 
effortful and error-prone. Visual processing, natural language 
processing, and many other types of cognition exhibit similar 
properties. In the next section, the discussion turns to an 
organizational level of analysis.  

2.2 Coordination 
One of the fundamental problems of software engineering is that 
design decisions constrain other design decisions in ways that are 
often hard to describe and difficult to understand completely. 
Despite the advances in software architecture, the use of information 
hiding in object-oriented design, and advances in programming 
languages, software is still full of interdependencies [11]. The 
problem is made much worse by the fact that design decisions are 
distributed across time and over people. Managing these 
interdependencies is the problem of coordination [29].  
Coordination problems are pervasive in large projects (see, e.g., 
[10]. I would argue that many of what we consider the key advances 
in our field, such as modular design, are important precisely because 
they address the coordination issue. Modular software is better than 
monolithic software because individual teams can work on modules 
without being overwhelmed with the need to communicate about 
design decisions outside the team [7]. In Parnas’s classic paper that 
began the movement toward information hiding and modularity, he 
was quite explicit that by “module” he meant “a responsibility 
assignment rather than a subprogram” [31] p. 1054.  
Despite these insights of 30 years ago, we have not yet fully come to 
grips with the certainty that product architecture and organizational 
structure are intimately related. In fact, architectural innovation has 
led to the failure of product firms because they were unable to adjust 
organizationally [20]. An ethnographic study of software architects 
in a large firm found that they spent a large proportion of their time 
and energy engaged in “social engineering” in order to design an 
architecture that “fits” the organization [18]. If we assume that we 
can design architectures purely on technical grounds, we place our 
organizations and our customers at risk, but as yet we understand 
relatively little about how to think about this problem, beyond the 
speculation that there is a homomorphic relation between units of 
the product and units of the organization [7]. We need 
interdisciplinary research to understand the constraints that 
architectures impose on organizations, and that organizations 
impose on architectures, and how technical and organizational 
structures can co-evolve.  
Extreme cases are often particularly interesting, and in open source 
software development we have and extreme case of geographically-
distributed development. There has been much research interest in 
open source software, but the vast majority of work has been done 
by economists and management scientists, who are typically 
interested in questions of developer motivation and allocation of 
resources. Open source also presents questions of great interest to 

software engineers. For example, how can these widely-distributed 
projects succeed at all, give that they generally have no hint of 
defined process, relatively unsophisticated if serviceable tools [19], 
very sparse collaboration technology, virtually no management in 
the traditional sense [16], minimal if any plans, little if any 
requirements gathering and analysis beyond change requests and e-
mail lists, [33] generally no system testing before release [30], and a 
host of other egregious violations of customary practice. And all 
these motley collections of volunteer techies have managed to do is 
create and maintain much of the software that runs the internet, a 
couple of highly-competitive operating systems, a web server that 
dominates the market, and much more.  
Research to uncover the complex relationships between the code 
structure and organizational structure in open source is still in its 
infancy (see, e.g., [27]). Open source may have much to teach us 
about how to loosen the constraints between organization and 
architecture. Yet we really do not yet know much about the true 
capabilities of open source practices. For example, open source 
projects generally begin with a working system, built in the usual 
ways by an individual or co-located team. Open source practices are 
used for evolution and maintenance. Is it necessary to have a proto-
system to create a common vision of the product? In what other 
ways can this coordinating function be performed? Can open source 
practices and tools be effective in earlier stages of development, 
such as high-level design? Are there particular architectural 
characteristics that support such a distributed development style? 
Can open source practices succeed in an industry environment? We 
have much to learn from open source. 
There are theoretical views of coordination that help to explain the 
mechanisms underlying coordination, and for the most part they are 
theories from outside software engineering. One view, originating 
with Tom Malone [29] takes a radically interdisciplinary approach, 
noting that coordination problems and solutions have a similar 
character and structure in many fields. For example, the problems of 
humans competing for floor space and programs competing for 
memory have similar characteristics, since both are instances of a 
resource conflict. Independent of discipline, one could theoretically 
catalog all types of dependency patterns, and identify mechanisms 
(e.g., scheduling) that can resolve each type of conflict [9, 11]. 
Another view, with origins in sociology, views coordinated activity 
as, in effect, a distributed cognitive system that includes people, 
artifacts, and practices [24]. Careful ethnographic studies have 
revealed in great detail how many such systems work, including 
several radically different kinds of manual navigation, and the 
activity in the cockpit of an airplane. Finally, distributed AI deals 
with coordination among agents, and much of their machinery for 
doing so can be seen as a theory of coordination. For example, 
Durfee and colleagues [13, 14] have created hierarchical multi-
dimensional spaces in which agents exchange information about 
their own activities in adaptive ways, attempting to minimize 
communication overhead while facilitating interaction.  
Based on these theoretical considerations, colleagues and I have 
begun to think of coordination in software engineering as occurring 
along multiple dimensions [23]. For example, in a project where 
multiple teams or even multiple organizations are involved, one can 
impose different levels of uniformity. One can, for example, have 
more process or less process, i.e., processes defined at a very 
detailed level, or at a very high level, or anywhere in between. One 
can share design and implementation knowledge at a variety of 
levels, from just interfaces to the entire code base. Detailed project 
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plans can be shared, or groups can plan independently, sharing only 
certain milestones. These and other “dimensions of coordination” 
certainly have complex interrelationships and enable a variety of 
tradeoffs. For example, can we reduce the detail in our process if we 
do more work to carefully define our technical interfaces? 
Understanding how to pick good points in this multi-dimensional 
space, and how to recognize early signs of breakdown and how to 
respond to them is our ongoing research program. 

3. Barriers to Interdisciplinary Research 
In hopes that I have convinced you there is good reason to think that 
interdisciplinary research is important to the future of our discipline, 
I want to conclude with a brief discussion of how to facilitate it. 
Some of the most important steps we can take are to create a culture 
that nurtures it. Based on my experience in institutions that have 
successfully fostered such research, I have several observations 
about the barriers that need to be eliminated in order to create such a 
culture. 
The Universal Principle of Interdisciplinary Contempt. It is 
extremely difficult not to be dubious about the way someone in 
another discipline talks about a problem that is of interest to you. 
After all, we spend many years, from graduate school on, learning 
how to savage shoddy research. And people in other disciplines 
often talk in odd ways – they miss the point, they have no sense of 
rigor, they are unfamiliar with basic concepts and tools. Of course, 
these people are also sizing you up in similar fashion. 
Interdisciplinary collaboration requires a temporary “suspension of 
contempt” if I may call it that, until one understands something of 
the nature of the problems, approaches, and style of thinking typical 
of the alien discipline. 
The Universal Management Principle: Everything I don’t 
understand is simple. I can’t find the reference, but if I recall 
correctly, this principle has its origin in Dilbert. It was explained as 
the principle that makes management possible. Just as what is near 
seems full of detail and what is distant seems just blobs lacking 
nuance, my discipline is incredibly challenging and important, and 
your discipline (of which I achieved sufficient understanding by 
reading an article in USA Today) is largely full of people who 
couldn’t make it in my discipline. This very helpfully reinforces the 
contempt principle.  
Administrivia. Roughly speaking, the administrivia burden 
increases approximately as the cube of the number of administrative 
units involved. If you collaborate outside the department on a grant 
or to teach a course, there will be contention over the revenue 
implications. Our students can’t get full credit for taking their 
courses without forms, justifications, appeals to committees. And 
then of course, there are the really serious administrative issues. 
Publications in other disciplines won’t count toward tenure or 
promotion. In fact, there may not even be an obvious place to 
publish the work.  
Border Defense. Software engineering is usually housed in 
computer science departments or schools, and we are often regarded 
as a sort of fringe discipline by the more purist among our computer 
science colleagues. Interdisciplinary research may seem completely 
beyond the pale. In some environments, I have heard people asking 
the question, of one research program or other, “But is that really 
computer science?” Many people spend significant time and energy 
worrying about this question, apparently. The best answer I’ve heard 
was given by my colleague Randy Pausch, co-director of the 

Entertainment Technology Center in the School of Computer 
Science at CMU. When a student asked whether a project he, the 
student, was considering was “really” computer science, Randy 
replied, with a hint of impatience, “Do something great; we’ll decide 
what to call it later!”  
Practical application on a per-paper basis. In software engineering, 
we have a strong if unfortunate tendency to think that every paper 
should show a practical result that is immediately useful. We don’t 
always achieve that, by any means, but it is rarely questioned as a 
goal. I would like to question it. To return to the medical analogy I 
borrowed from Brooks at the beginning of this paper, medicine 
builds on fundamental research into how biological systems work. 
We are well aware that it may take many years for a discovery to 
lead to some useful result. Applying to medicine the rather impatient 
standard we apply to ourselves, all energy would be diverted to 
clinical trials of someone’s latest brainstorm, rather than the steady 
formulation and test of theories to identify fundamental disease 
processes, principles of pharmacology, and so on. I think it is quite 
reasonable to expect programs of research to lead to practical 
results, but we need to spend some time and energy understanding 
how things work. 

4. Conclusion 
As a field we have benefited enormously from our borrowings from 
behavioral science. A notable example is adapting and applying 
empirical methods to experimentally validate and accumulate results 
(e.g., [3, 37]). We have borrowed theories, especially from 
economics, and turned them to good advantage as tools to use in 
technical and project decision-making (e.g., [4, 35]). We need to 
continue in this strong interdisciplinary path, and as others have also 
argued [2], nurture our own theoretical tradition. We will need to 
draw broadly on many disciplines in order to succeed.  
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