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ABSTRACT

Computer science is necessary but not sufficient to understand and
overcome the problems we face in software engineering. We need to
understand not only the properties of the software itself, but also the
limitations and competences humans bring to the engineering task.
Rather than rely on commonsense notions, we need a deep and
nuanced view of human capabilities in order to determine how to
enhance them. I discuss what I regard as promising examples of
cognitive and organizational theories and propose research
directions to develop new ways of representing run-time behavior
and ways of thinking about project coordination. I conclude with
observations on creating an interdisciplinary culture.

Categories and Subject Descriptors
D.2,0 [General]

General Terms
Measurement, Experimentation, Theory.

Keywords
Coordination, behavioral science, interdisciplinary,
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1. INTRODUCTION

Nearly two decades ago, Fred Brooks, in his classic “no silver
bullet” paper [5] warned us that certain of the difficulties of building
software systems derive from the essential nature of software, hence
are unlikely to be overcome by any single breakthrough. In fact, the
more deeply we understand the nature of software development, the
more we begin to grasp its true difficulties. Brooks makes this point
with an analogy to medicine:

The first step toward the management of disease was
replacement of demon theories and humours theories by
the germ theory. That very step, the beginning of hope,
in itself dashed all hopes of magical solutions [6] p. 181.

I want to suggest in this talk that a deeper understanding of our own
field leads us into the intersection of several scientific disciplines —
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an intellectual bramble that many of us would rather avoid than try
to untangle.

The history of germ theory provides an informative historical
analog. Between the time that John Snow published the first
convincing epidemiological evidence for germ theory (the famous
study showing the spread of cholera from the Broad Street Pump)
and the general acceptance of those conclusions, was about 80-100
years [38]. The delay can be attributed to the entrenched, “common-
sense” view prevalent at the time, which held that diseases were
caused by “foul emanations from soil, water and air” [36] p. 377.
This view often led to helpful actions, such as its emphasis on
general cleanliness. But it also posed serious dangers, as when it was
proposed that in order to promote hygiene, the streets of London
should be meticulously cleaned up, including all the human waste,
with the offending materials to be dumped into the Thames [38].
Unfortunately, the Thames provided the city’s drinking water, so the
proposal would have created an extremely effective channel for
propagation of diseases like cholera and typhoid.

As Brooks points out, the difference between folk medicine and
medicine as we currently know it is a better understanding of the
underlying mechanisms that produce the phenomena of interest. In
software engineering, we generally rely on computer science to
provide explanations in terms of these underlying mechanisms, and
that is often precisely the right place to turn. We need not, for
example, rely on folk wisdom about how well various algorithms
will scale with the number of inputs. We can analyze the algorithms,
and understand precisely why they scale differently. Pointing out the
utility of computer science for software engineering is to belabor the
obvious.

The thesis of my talk, however, is that computer science is not
enough. Neither is computer science plus common sense. We need
not only to understand the properties and behavior of software, but
also the behavior of software engineers, development teams, and
organizations. The extraordinary complexity, conformance,
changeability, and invisibility of software — the sources of its
essential problems, according to Brooks [5] — severely challenge
human capabilities. Understanding the underlying mechanisms in
play as people tackle software engineering tasks — mechanisms
rooted in human cognition, social practices, and culture — is critical
to the progress of our field.

2. BRAINS AND SOFTWARE

The functional components of the human brain “were designed by
natural selection to solve adaptive problems faced by our hunter-
gatherer ancestors” [8]. The match of such components to the tasks
of software development is not always what one would hope. The
human cognitive landscape has many islands of specific, highly-



specialized and very powerful subsystems such as natural language
processing [32] and visual processing [39]; yet tasks requiring far
simpler forms of cognition, e.g., simple logic problems, are often
performed very slowly and with many errors [15] because of a poor
match with cognitive competences.

Understanding how to optimally engage this collection of
competences in the highly complex tasks of software design and
implementation is an exercise in mapping novel tasks onto cognitive
machinery designed for very different purposes. It often results in
what we might call “cognitive mismatch.” For example, people tend
to find the task of learning programming languages effortful, and
most people never attempt it, or try then give up. On the other hand,
nearly every intact human effortlessly performs the far more
complex task of learning one or more natural languages, with no
need for instruction or feedback, to an extremely high level of
competence [32]. As a second example, it is well-known that small
groups of people who spend time together naturally develop a
“transactional memory” in which individuals specialize in storing
and retrieving particular kinds of information so that the multi-
individual system functions as a retrieval device far more effectively
than the sum of non-interacting individuals [26]. This process is
badly disrupted in geographically distributed teams where typical
face-to-face interactions, which provide the information from which
the specializations are generated, typically do not happen [22].

The overall point of this talk is that understanding how to do
software engineering better requires a deepening of our
understanding of 1) effective software engineering principles and
practice, and 2) how these principles and practices line up against
human cognitive, social, and cultural functioning. Current software
engineering research, in my view, is making steady progress in the
former, but constantly risks irrelevance as it neglects the realities of
the latter. We tend to assume that humans can and will simply
change in whatever ways are necessary. Human functioning is not
nearly so malleable, however, and we ignore this fact to our great
detriment.

If this major point is correct, there should be many critical areas of
software engineering in which we can make better use of human
capabilities. In order to do this, we need theories that shed light on
the underlying mechanisms as software tasks are mapped onto
specific human competences. I will focus on two examples: naive
psychology and coordination.

2.1 Naive Psychology

One often hears descriptions of software that are strangely
anthropomorphic, describing, for example, what a component
“knows” or is “trying” to do. In fact, Edsgar Dijkstra was so
offended by the frequency of such talk that he suggested instituting a
system of fines to stamp it out [12]. No one advocates or teaches this
style of description, so why do people use it instead of the more
precise vocabulary of computer science?

Consider a team trying to understand the odd runtime behavior of a
particular component (call it component A) in a very complex,
distributed software system. Suddenly, someone says, “Ah, 4 thinks
file foo is corrupted!” This insight explains the complex pattern of
peculiar behavior, and everyone agrees quickly with the diagnosis.
Consider, for a moment, the semantics of this statement. It carries
very complex implications about the relation of the component and
the file, alternative actions the component may engage in, ways that
the component interprets state that relates to the file, and so on.
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Imagine trying to express the semantics fully in some other way,
e.g., there is a Boolean field set to “false,” various components call
methods that read this field, etc. Translation of the full import of the
semantics of “knows,” without recourse to other anthropomorphic
descriptions would be extremely long and difficult to understand, if
it were possible in any practical sense at all. Talking about what a
component “knows” is a very abstract description of system state
that knits together, in a way instantly understood by others, many
diverse system behaviors and internal states.

It is not surprising that humans favor this form of description. When
closely examined, it reflects very sophisticated reasoning about what
“people” (or things treated anthropomorphically) believe, are trying
to do, and the ways in which these relate to behavior. It is now well-
established that such reasoning is characteristic of a powerful
cognitive subsystem that is highly specialized to navigate the
complex human social world [28]. The course of development is
increasingly understood [25], and the specific brain structures that
are responsible for the capability have been identified [17, 34]. Poor
functioning in these structures is linked with the syndrome of autism
[1], in which people cannot interact socially, treating other people
much as they do inanimate objects.

There is fairly strong evidence that professional software engineers
make very heavy use of this cognitive system in collaborative
software engineering activities [21], and it is not clear that there is
any other choice for interactions among people in real time.
Different cognitive systems operate at different speeds. Working
alone, one is free to use any system that is appropriate, operating at
any speed that allows the task to fit within scheduling constraints.
Collaborative work, on the other hand, is socially constrained to
operate at a rapid pace. The naive psychology system is perhaps the
only powerful, fast cognitive system that is well-adapted to
modeling runtime behavior. There may simply be no other
straightforward way for groups of people to think collaboratively
about runtime behavior in various scenarios, or to debug difficult
problems in distributed systems.

Although 1 have argued that the use of naive psychology has
advantages and may even be inevitable, I do not completely
discount Dijkstra’s concerns. Suppose, for example, that the runtime
component states cannot be accurately described in the vocabulary
of naive psychology? This would likely make runtime behavior very
hard to understand, but even harder for people to talk about if using
naive psychological concepts. Or it might well be the case that
recording the conclusions reached in collaborative sessions is very
error prone, since it requires a translation from naive psychological
talk to some more standard representation.

This line of thinking suggests several fruitful interdisciplinary
research directions. One would be to work out the semantics of
naive psychology. This might make it possible, for example, to
design components that can more accurately be described at runtime
by statements about belief and desire, or even to assure that
statements like “Component 4 believes proposition p” is atomically
true or false for the component, i.e., it cannot fall into some
inconsistent, hence confusing, state. Other work could seek to
understand the contours of naive psychology as applied to runtime
components. One could, for example, design a series of experiments
to determine when and to what extent the use of naive psychological
explanations can accurately describe runtime behavior, and the
particular kinds of errors it generates. The long-term results could
lead, for example, to new kinds of standard abstract representations



that are very powerful yet very simple to understand. It might also
lead to practices or tools designed to recognize or prevent errors
induced by the irresistible tendency to think anthropomorphically
about programs. The conception of “naive psychology” and its
cognitive and neural basis forms a theoretical thread to tie this
research program together.

Naive psychology, of course, is just one example, which I used to
illustrate the point that human cognition exhibits unexpected
properties, with very sharp gradients between complex tasks that can
be performed effortlessly and relatively simple tasks that are
effortful and error-prone. Visual processing, natural language
processing, and many other types of cognition exhibit similar
properties. In the next section, the discussion turns to an
organizational level of analysis.

2.2 Coordination

One of the fundamental problems of software engineering is that
design decisions constrain other design decisions in ways that are
often hard to describe and difficult to understand completely.
Despite the advances in software architecture, the use of information
hiding in object-oriented design, and advances in programming
languages, software is still full of interdependencies [11]. The
problem is made much worse by the fact that design decisions are
distributed across time and over people. Managing these
interdependencies is the problem of coordination [29].

Coordination problems are pervasive in large projects (see, e.g.,
[10]. T would argue that many of what we consider the key advances
in our field, such as modular design, are important precisely because
they address the coordination issue. Modular software is better than
monolithic software because individual teams can work on modules
without being overwhelmed with the need to communicate about
design decisions outside the team [7]. In Parnas’s classic paper that
began the movement toward information hiding and modularity, he
was quite explicit that by “module” he meant “a responsibility
assignment rather than a subprogram” [31] p. 1054.

Despite these insights of 30 years ago, we have not yet fully come to
grips with the certainty that product architecture and organizational
structure are intimately related. In fact, architectural innovation has
led to the failure of product firms because they were unable to adjust
organizationally [20]. An ethnographic study of software architects
in a large firm found that they spent a large proportion of their time
and energy engaged in “social engineering” in order to design an
architecture that “fits” the organization [18]. If we assume that we
can design architectures purely on technical grounds, we place our
organizations and our customers at risk, but as yet we understand
relatively little about how to think about this problem, beyond the
speculation that there is a homomorphic relation between units of
the product and units of the organization [7]. We need
interdisciplinary research to understand the constraints that
architectures impose on organizations, and that organizations
impose on architectures, and how technical and organizational
structures can co-evolve.

Extreme cases are often particularly interesting, and in open source
software development we have and extreme case of geographically-
distributed development. There has been much research interest in
open source software, but the vast majority of work has been done
by economists and management scientists, who are typically
interested in questions of developer motivation and allocation of
resources. Open source also presents questions of great interest to
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software engineers. For example, how can these widely-distributed
projects succeed at all, give that they generally have no hint of
defined process, relatively unsophisticated if serviceable tools [19],
very sparse collaboration technology, virtually no management in
the traditional sense [16], minimal if any plans, little if any
requirements gathering and analysis beyond change requests and e-
mail lists, [33] generally no system testing before release [30], and a
host of other egregious violations of customary practice. And all
these motley collections of volunteer techies have managed to do is
create and maintain much of the software that runs the internet, a
couple of highly-competitive operating systems, a web server that
dominates the market, and much more.

Research to uncover the complex relationships between the code
structure and organizational structure in open source is still in its
infancy (see, e.g., [27]). Open source may have much to teach us
about how to loosen the constraints between organization and
architecture. Yet we really do not yet know much about the true
capabilities of open source practices. For example, open source
projects generally begin with a working system, built in the usual
ways by an individual or co-located team. Open source practices are
used for evolution and maintenance. Is it necessary to have a proto-
system to create a common vision of the product? In what other
ways can this coordinating function be performed? Can open source
practices and tools be effective in earlier stages of development,
such as high-level design? Are there particular architectural
characteristics that support such a distributed development style?
Can open source practices succeed in an industry environment? We
have much to learn from open source.

There are theoretical views of coordination that help to explain the
mechanisms underlying coordination, and for the most part they are
theories from outside software engineering. One view, originating
with Tom Malone [29] takes a radically interdisciplinary approach,
noting that coordination problems and solutions have a similar
character and structure in many fields. For example, the problems of
humans competing for floor space and programs competing for
memory have similar characteristics, since both are instances of a
resource conflict. Independent of discipline, one could theoretically
catalog all types of dependency patterns, and identify mechanisms
(e.g., scheduling) that can resolve each type of conflict [9, 11].
Another view, with origins in sociology, views coordinated activity
as, in effect, a distributed cognitive system that includes people,
artifacts, and practices [24]. Careful ethnographic studies have
revealed in great detail how many such systems work, including
several radically different kinds of manual navigation, and the
activity in the cockpit of an airplane. Finally, distributed Al deals
with coordination among agents, and much of their machinery for
doing so can be seen as a theory of coordination. For example,
Durfee and colleagues [13, 14] have created hierarchical multi-
dimensional spaces in which agents exchange information about
their own activities in adaptive ways, attempting to minimize
communication overhead while facilitating interaction.

Based on these theoretical considerations, colleagues and I have
begun to think of coordination in software engineering as occurring
along multiple dimensions [23]. For example, in a project where
multiple teams or even multiple organizations are involved, one can
impose different levels of uniformity. One can, for example, have
more process or less process, i.e., processes defined at a very
detailed level, or at a very high level, or anywhere in between. One
can share design and implementation knowledge at a variety of
levels, from just interfaces to the entire code base. Detailed project



plans can be shared, or groups can plan independently, sharing only
certain milestones. These and other “dimensions of coordination”
certainly have complex interrelationships and enable a variety of
tradeofts. For example, can we reduce the detail in our process if we
do more work to carefully define our technical interfaces?
Understanding how to pick good points in this multi-dimensional
space, and how to recognize early signs of breakdown and how to
respond to them is our ongoing research program.

3. Barriers to Interdisciplinary Research

In hopes that I have convinced you there is good reason to think that
interdisciplinary research is important to the future of our discipline,
I want to conclude with a brief discussion of how to facilitate it.
Some of the most important steps we can take are to create a culture
that nurtures it. Based on my experience in institutions that have
successfully fostered such research, I have several observations
about the barriers that need to be eliminated in order to create such a
culture.

The Universal Principle of Interdisciplinary Contempt. 1t is
extremely difficult not to be dubious about the way someone in
another discipline talks about a problem that is of interest to you.
After all, we spend many years, from graduate school on, learning
how to savage shoddy research. And people in other disciplines
often talk in odd ways — they miss the point, they have no sense of
rigor, they are unfamiliar with basic concepts and tools. Of course,
these people are also sizing you up in similar fashion.
Interdisciplinary collaboration requires a temporary “suspension of
contempt” if I may call it that, until one understands something of
the nature of the problems, approaches, and style of thinking typical
of the alien discipline.

The Universal Management Principle: Everything I don’t
understand is simple. 1 can’t find the reference, but if I recall
correctly, this principle has its origin in Dilbert. It was explained as
the principle that makes management possible. Just as what is near
seems full of detail and what is distant seems just blobs lacking
nuance, my discipline is incredibly challenging and important, and
your discipline (of which I achieved sufficient understanding by
reading an article in US4 Today) is largely full of people who
couldn’t make it in my discipline. This very helpfully reinforces the
contempt principle.

Administrivia. Roughly speaking, the administrivia burden
increases approximately as the cube of the number of administrative
units involved. If you collaborate outside the department on a grant
or to teach a course, there will be contention over the revenue
implications. Our students can’t get full credit for taking their
courses without forms, justifications, appeals to committees. And
then of course, there are the really serious administrative issues.
Publications in other disciplines won’t count toward tenure or
promotion. In fact, there may not even be an obvious place to
publish the work.

Border Defense. Software engineering is usually housed in
computer science departments or schools, and we are often regarded
as a sort of fringe discipline by the more purist among our computer
science colleagues. Interdisciplinary research may seem completely
beyond the pale. In some environments, I have heard people asking
the question, of one research program or other, “But is that really
computer science?” Many people spend significant time and energy
worrying about this question, apparently. The best answer I’ve heard
was given by my colleague Randy Pausch, co-director of the
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Entertainment Technology Center in the School of Computer
Science at CMU. When a student asked whether a project he, the
student, was considering was “really” computer science, Randy
replied, with a hint of impatience, “Do something great; we’ll decide
what to call it later!”

Practical application on a per-paper basis. In software engineering,
we have a strong if unfortunate tendency to think that every paper
should show a practical result that is immediately useful. We don’t
always achieve that, by any means, but it is rarely questioned as a
goal. I would like to question it. To return to the medical analogy I
borrowed from Brooks at the beginning of this paper, medicine
builds on fundamental research into how biological systems work.
We are well aware that it may take many years for a discovery to
lead to some useful result. Applying to medicine the rather impatient
standard we apply to ourselves, all energy would be diverted to
clinical trials of someone’s latest brainstorm, rather than the steady
formulation and test of theories to identify fundamental disease
processes, principles of pharmacology, and so on. I think it is quite
reasonable to expect programs of research to lead to practical
results, but we need to spend some time and energy understanding
how things work.

4. Conclusion

As a field we have benefited enormously from our borrowings from
behavioral science. A notable example is adapting and applying
empirical methods to experimentally validate and accumulate results
(e.g., [3, 37]). We have borrowed theories, especially from
economics, and turned them to good advantage as tools to use in
technical and project decision-making (e.g., [4, 35]). We need to
continue in this strong interdisciplinary path, and as others have also
argued [2], nurture our own theoretical tradition. We will need to
draw broadly on many disciplines in order to succeed.
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