

Formulation and Preliminary Test of an Empirical Theory
of Coordination in Software Engineering

James D. Herbsleb
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, USA 15213

+1 412 268-8933

jdh@cs.cmu.edu

Audris Mockus
Avaya Labs Research
233 Mount Airy Road

Basking Ridge, NJ, USA 07920
+1 908 696-5608

audris@avaya.com

ABSTRACT
Motivated by evidence that coordination and dependencies among
engineering decisions in a software project are key to better
understanding and better methods of software creation, we set out
to create empirically testable theory to characterize and make
predictions about coordination of engineering decisions. We
demonstrate that our theory is capable of expressing some of the
main ideas about coordination in software engineering, such as
Conway’s law and the effects of information hiding in modular
design. We then used software project data to create measures
and test two hypotheses derived from our theory. Our results
provide preliminary support for our formulations.

Categories and Subject Descriptors
D.2 [Software Engineering]: Management – productivity,
programming teams, software process models.

General Terms
Management, Measurement, Performance, Design, Economics,
Experimentation, Theory.

Keywords
Empirical theory, coordination, engineering decisions, Conway’s
Law, empirical studies.

1. INTRODUCTION
Coordination of the engineering work of individual software
engineers is a central concern of the discipline of software
engineering. Just as the work performed by a program can be
partitioned into computation and coordination [10], the
engineering work of a software project can be partitioned into the
decision-making of individual engineers and the coordination of
those decisions so as to produce software with the required
characteristics.
There are several kinds of evidence one can adduce in support of
the proposition that coordination of engineering work is central to

software engineering. Empirical studies of large-scale software
development, for example, show that coordination of engineering
work is one of the most difficult and pervasive of the problems
(see, e.g., [7, 26]). Moreover, many of the foundational ideas of
software engineering primarily address coordination problems.
For example, the notion of modularity [20], clearly one of the
foundational ideas in software engineering, concerns primarily the
coordination of software engineering work. Modules, or “work
items” as Parnas defined them to be, address how work may be
split among teams in a way that does not impose unreasonable
requirements for coordination and communication among teams.
Modularity is important only because it influences the ability of
humans to understand and coordinate their work.
While there is probably little doubt among researchers or
practitioners that coordination of engineering work is key for
successful software engineering, the idea of coordination is often
frustratingly elusive. While it seems clear that coordination often
involves good communication, and that coordination concerns
constraints among engineering decisions, it is not so clear what it
means to enhance coordination, how to tell if good coordination is
present in a project, and what precisely are the implications of
effective and ineffective coordination.
In this paper, we try to build upon the research literature and upon
various common intuitions about what coordination in software
engineering is, in order to formulate a reasonably rigorous, clear,
and testable “empirical” theory of coordination in software
engineering. In the remainder of this section, we distinguish the
idea of an “empirical theory” from the usual conception of
“theory” in computer science in order to clarify our objective. We
then briefly discuss prior work on coordination from which our
approach draws. In section 2, we present our theory of
coordination in software engineering. In section 3, we present the
empirical methods and results from a field study in which we
performed a preliminary test of hypotheses derived from our
theory. We present our discussion in section 4, and conclude the
paper in section 5.

1.1 “Empirical” Theory
 “Theory,” in the generally accepted use of the term in
mathematics and computer science, is quite distinct from “theory”
as the term is used in the physical and social sciences. For present
purposes, let it suffice to say that in computer science, theory is a
rigorous means of reasoning mathematically from axioms, in order
to prove theorems that ascribe interesting properties to software
systems or models of software systems. In general, there is no
sense in which such theories require empirical evidence in order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009…$5.00.

138

to be believed. Given the axioms and correct proofs, the
conclusions follow logically, not contingently.
“Theory,” as the term is used in science, differs in several
important respects. Scientific theories, for example, may or may
not be formulated mathematically. Theories are generally
expressed mathematically in physics, as they sometimes are in
other branches of science, such as certain areas of biology and
psychology. Despite the many advantages of mathematical
formulations, there are many key scientific theories that are simply
not susceptible of mathematical expression. In either case,
whether the theory is or is not expressed mathematically, a theory
does not stand on its axioms and the validity of its arguments
alone. One must be concerned always to ask if the phenomena of
interest actually are accurately described by the theory. The most
brilliant and rigorous of theories runs the risk that it may simply
be wrong, i.e., an inaccurate description of how the world works.
We will call theories of the sort found in science “empirical,”
drawing attention to the fact that they stand or fall not only on
their internal consistency, but on the weight of evidence. For the
remainder of this paper, when we use the term “theory” we mean
“empirical theory,” unless otherwise indicated.
Empirical theories are ordinarily tested by drawing out the
implications of the theory for observable phenomena, i.e.,
generating hypotheses, then observing or constructing situations
in which these hypotheses can be tested. Hypothesis testing
requires both that such hypotheses can be formulated, and that the
relevant observations can be made. Evaluation of empirical
theories is almost never achieved with one or even a few tests of
hypotheses, since disconfirmation can usually be accommodated
with adjustments in the theory, and confirmation can generally be
explained by more than one theory. Theories evolve or are
replaced on the basis of sustained research programs.
It is important to note that testing hypotheses derived from
empirical theories is not the only basis for doing important and
valid empirical research in software engineering. The vast
majority of empirical work is what we would call empirical
“validation” research that has as its main purpose validating
claims made in support of the advantage of some new innovation,
be it a tool, a process, or a methodology. There has been a trend
in recent years toward more emphasis on careful validation, which
we wholeheartedly applaud. We see this as distinct from theory-
based empirical research. This is a distinction we develop
throughout the paper, and which we hope will become much
clearer after we provide an example of an empirical theory.
In light of this discussion of empirical theory, we can restate our
goals:

• to formulate an empirical theory of coordination in software
engineering,

• to identify testable hypotheses that follow from this theory,
and

• to show examples of precisely how one can go about
empirically testing such hypotheses.

The theory we propose has roots in several lines of research, each
of which we will briefly and selectively review in the remainder of
this section.

1.1.1 Interdisciplinary Theory of Coordination
Coordination problems in many fields have similar properties
[17]. For example, the problems of humans competing for floor
space and programs competing for memory have similar
characteristics, since both are instances of a resource conflict.
Independent of discipline, one could theoretically catalog all types
of dependency patterns, and identify mechanisms (e.g.,
scheduling) that can resolve each type of conflict [6, 8].
While such a broad, general approach has considerable appeal, we
do not believe that software engineering is sufficiently mature,
except in a few fairly isolated cases, for an approach that requires
exhaustive cataloging of dependency patterns among engineering
decisions. Design work, in particular, is extraordinarily complex,
and is structured by very complicated patterns of constraints
among engineering decisions (see, e.g., [23]). While we may now
be able to identify general patterns underlying some of them (e.g.,
resource conflicts), and we may eventually identify many more,
the current state of engineering is such that dependencies among
engineering decisions appear to have enormous variety, and seem
unlikely to be susceptible, in general, of such “cookbook”
solutions. Our approach, in contrast, does not identify and
consider particular coordination problems, but rather just the sets
of decisions as they constrain decision-makers.

1.1.2 Distributed Cognition
Many complex tasks are best understood as cognitive or problem-
solving process that are distributed over individuals and artifacts
(e.g., [13, 14]), distributed over time, and partially embedded in
the habits, practices, and routines of the people who carry out the
cognitive activities (e.g., [3]). While we are not aware of any
attempts to formally and explicitly describe the coordination
aspects of distributed cognition, the view of coordinated activity
as many interdependent tasks, where coordination occurs by
means of communication and sharing of artifacts, and is
embedded in a social and organizational context has much in
common with our view. In fact, our work could be considered a
formalization of one key aspect of distributed cognition, i.e., the
impact of mutual constraints among decisions.
A related line of work in artificial intelligence, called distributed
artificial intelligence, has specified frameworks for coordinating
activities among distributed agents for tasks such as regulating
traffic signals or factory floor robots (see, e.g, [9]). Distributed
artificial intelligence of necessity incorporates an explicit model
of coordination policies. The tasks, however, are much smaller
and simpler than typical industrial software engineering tasks.

1.1.3 Geographically Distributed Software
Engineering
Coordination issues become more apparent when the usual modes
of coordinating activity are interrupted. In geographically
distributed software engineering, projects are split across sites,
with a resultant nearly total absence of informal communication
among developers [11]. As one would expect, the reduction in
communication appears to lead to longer cycle times [12]. The
effect appears to be caused by the involvement of more people in
distributed work items that for comparable work items where all
work is performed at a single site. In fact, a statistical model of
interval for work items shows that the number of people involved
in a work item (which is presumably a reasonable indicator of
coordination issues) is the most significant predictor of interval, in

139

a model that includes other important variables such as size and
complexity of the change, and other factors [12]. As will become
evident, the delays associated with geographically distributed
software engineering can be seen as a special case of the
coordination phenomena described by our theory.

1.1.4 Toward Empirical Theory for Software
Engineering
We conclude this section by discussing very briefly the
requirements and motivation for empirical theory specifically in
the field of software engineering. First, we note that there is
considerable overlap between the subject matter of software
engineering and several fields of social science, such as
psychology, anthropology, sociology, and organizational science.
We have much to learn from these fields, both in empirical
methods and substance. Yet we suspect that software engineers
and researchers in software engineering, who are generally trained
in computer science or an engineering discipline, will never be
comfortable with the theories of social science. Such theories are
seldom formulated in a way that software engineers would
consider sufficiently rigorous and precise. Just as the various
social sciences have evolved their own theoretical traditions
which differ markedly from each other, and for good reason, we
believe software engineering must evolve its own tradition of
empirical theorizing and hypothesis testing. We offer our theory,
in part, as a modest step in this direction.
Second, while empirical investigation has, over time, assumed
increasing importance in software engineering, due to the
pioneering efforts of numerous investigators, (e.g., [1, 2, 21, 24,
25]) we believe that an increased emphasis on theory can have a
major impact on empirical investigations by providing a
mechanism whereby results become more cumulative. Empirical
investigations in software engineering often have a one-off flavor,
i.e., are aimed at validating a particular method or technique, or
discovering the circumstances under which it is effective. We
have no quarrel with such studies – validation of claims about
specific software engineering innovations is a vital facet of
software engineering research, and will continue to be so.
What is relatively rare in software engineering, however, is the
sort of theory-driven investigation that dominates the sciences.
Theories provide perspectives for viewing large classes of
phenomena, understanding the fundamental principles by which
they operate, and making predictions about what should happen in
specific cases. Much empirical research is typically focused on
testing hypotheses derived from the theories. These tests of
hypotheses may or may not have immediate practical
consequences (in contrast to empirical validations, which one
hopes would always have results of immediate practical interest).
Results accumulate over time into a more comprehensive, well-
established, and nuanced view of the field as theories are
supported, falsified, and modified on the basis of empirical
results.
This is slightly different from the usual view taken in empirical
studies in software engineering. Generality, or external validity,
of a study is most often analyzed as a function of
“representativeness,” e.g., of the task, the subjects, and other
characteristics of the study (see, e.g., [27] pp. 72-73; [16] p. 732).
The “representativeness” strategy uses essentially the logic of
sampling (i.e., the subjects should ideally be a random sample of
the population to which one would like to generalize, the task

should be a random sample of the population of tasks, etc. [4] to
establish legitimate generalizations.
While this view is well established and perfectly sound, it is not
the only legitimate basis for generalization in science (see, e.g.,
[19]). For example, one might create in the laboratory a
phenomena (e.g., by using a particle accelerator) that seldom if
ever occurs in nature, but that permits one to test a hypothesis
derived from a theory that purports to explain many phenomena,
whether those phenomena occur naturally or are artificially
generated. The experiment should be judged by how clearly it
tests hypotheses associated with the theory, and perhaps by how
important, clear, and general the theory appears to be. We believe
that research in software engineering would benefit from more
theory-based research, and the cumulative results that such
research provides.
In this section, we have discussed the need for empirical theories,
some of the antecedents of our empirical theory of coordination,
and specific reasons for theory development and testing in
software engineering. In the next section, we present our theory.

2. EMPIRICAL THEORY OF
COORDINATION (ETC)
Our focus is to propose a simple and well-defined model that
would describe coordination in software engineering, so we can
qualitatively express a number of principles, laws, and practices in
the field of software engineering. More specifically, we want to
represent coordination of engineering decisions in a precise way
so that meaningful theoretical statements can be formulated and
testable hypotheses generated. We use the word "engineering" in a
broad sense, meaning essentially, designing and constructing an
artifact with required characteristics.
Before developing the theory itself, let us say a word about the
intuitions behind it. We assume that there is a single (very large,
but finite) set of engineering decisions that characterize software
projects in general. One can then think of any particular software
project as defined by the combinations of choices for those
decisions that satisfy the requirements for that project. (Not
every possible decision will apply to every possible project – we
can handle this case simply by assuming that one possible choice
for each decision is “does not apply.”) We simplify by not
considering that different combinations of choices will satisfy the
requirements more completely or less completely. We consider
that each combination of choices is associated with a binary value,
i.e., it does or does not satisfy the requirements.
Software engineering work proceeds by making choices for all of
the decisions. As each is made, fewer decisions remain, until all
of the decisions are made, resulting in a final product that may or
may not satisfy the requirements. There is some degree of
concurrency in making the choices and the choices are potentially
made by many different people. Information about the choices
that have been made at any given time is imperfect. Decisions can
be made more than once, i.e., one choice can be retracted and a
new choice made.
We make no attempt to enumerate, or even create a taxonomy of
engineering decisions. Rather, the theory is concerned with the
patterns of dependency among them. A metaphor that has driven
some of our thinking about theory development is the kinetic
theory of gasses (see, e.g., [22]). By making a few assumptions,
e.g., about elasticity and velocity of highly idealized molecules,

140

some important large scale behaviors of gasses (e.g., the relation
among pressure, temperature, and volume) can be understood and
predicted. Our theoretical view of engineering decisions is also
highly idealized, but we believe that it is useful for understanding
and making predictions about certain phenomena, i.e., those
associated with coordination in software projects. Explanations of
other types of phenomena will no doubt require somewhat
different views of engineering decisions.
Engineering decisions are often mutually constraining. Making
one decision generally limits the alternatives from which one may
choose when making some other decisions. If constraints are
violated, then one or more decisions must be reconsidered or it
will not be possible to meet the requirements. Reconsidering one
decision may require reconsideration of additional decisions,
again, because of mutual constraints.
The essential problem of coordination that concerns us in this
paper1 is given by this property of mutual constraint among
engineering decisions, and by the necessity, in all projects of
significant size, of assigning responsibility for decisions to
different people. The problem of coordination, then, is the
problem of ensuring that these mutual constraints are recognized
and correctly acted upon as the engineering work proceeds.

2.1 Key definitions
Denote each engineering decision as a variable Xi that can take
values xij(i), where j(i) indicates that the range of possible values
varies with i. Selecting a choice for decision Xi is equivalent to
assigning a value to this variable. A design space is the set of all
possible assignments of the set of variables representing the
engineering decisions that have to be made. The goal space is the
subset of the design space, each member of which satisfies the
requirements. Each element of the goal space is a solution.
The engineering project has a set of constraints that operate over
the variables that represent the engineering decisions. Given an
assignment of a value for some variable, the constraints serve to
limit further assignments to other variables. The constraints are
defined implicitly by the feasibility function.
Define a feasibility function

),...,()()1(1 nnjj xxf ={1 iff product satisfies requirements,

 0 otherwise}
Such function implicitly defines a set of feasible choices for each
decision.2 Feasible choices for decision iX denoted as

)(iXFC are defined as a set

)(,:* kjikxij ∃≠∀ such that 1),...,,...,()(*)1(1 =nnjijj xxxf

Obviously, a particular choice in each decision has effects on
feasible choices in other decisions.

1 There may, of course, be additional coordination problems, such

as competition for resources, and so on, that do not concern us
in this paper.

2 Realistic decision functions will include many other
considerations besides feasibility, e.g., option value [24].

Effects of a decision)(:)(kkjk xXkj = on a decision l ,

denoted lXE(|))(kkjk xX = , is the set difference

ll XFCXFC ()(− |))(kkjk xX =

where lXFC(|))(kkjk xX = denotes the set of feasible

choices given that the set of possible choices in decision kX has

been narrowed to)(kkjx .

In other words, the effect of decision k on decision l is the
difference between feasible choices in the design space of variable
Xl before a variable Xk is assigned a value and the design space
after Xk is assigned a value. This definition obviously generalizes
to effects of a group of decisions on a single decision.
We can also define maximal effects where

lXME(| lXFCxk XEX
kkkj

())()(∈∪= |))(kkjk xX =

defines a set of choices for lX that can be made infeasible by at

least one feasible value of kX .

The state of a project can be defined as the set of decisions that
have been taken, which implicitly defines a set of remaining
decisions and their feasible choices.

2.2 Common “Laws” of Software Engineering
In this section, we provide two examples of “laws” or generally
accepted beliefs about coordination in software engineering in
terms of our theory, i.e., by considering various strategies of
taking decisions and their effects.
First consider a partition of decisions into non-overlapping
module-induced clumps Mp. The clump Mp provides information
hiding if decisions made outside the clump do not have effects on
the decisions made within the clump.3
More specifically:

ipkpi XMEMXMXkip (,,:,, ∉∈∀ | {}) =kX

We call this the principle of modularity because it expresses the
ideas of modularity suggested by Parnas [20]. The clumps of
decisions Mp can be induced by pieces of architecture, i.e., when
decisions are grouped if they pertain to a part of software
architecture.
We define the "Parnas" effect for a given decision Xi as the
number of decisions in other modules that have nonempty effects
on Xi. The Parnas effect for a system is the sum of the Parnas
effects for all of the Xi.
Alternatively, the clumps of decisions Tc can be induced by an
organizational unit (e.g., teams or individuals) involved in the
software project, i.e., when decisions are grouped if they are made
by an organizational unit, such as a development team. Conway’s

3 For simplicity, we ignore decisions concerning module

interfaces.

141

Law [5] states that the structure of a system resembles the
structure of the organization that designed it.
Conway's law can be formulated as follows:

,: cp TMcp ⊂∃∀

i.e., no modules are implemented by several organizations. In
other words there exists a homomorphic function with the domain
of all modules and the range of teams. As Conway [5] and others
[11] have noted, even if this function exists for an initial design,
the evolution of the design will generally outpace organizational
change, and lead to “violations” of Conway’s Law. The number
of variables that do not fit in this homomorphic relationship could
be said to be the “Conway” number of the system.
Finally, we wish to suggest that many more of the basic
conceptual tools of software engineering can be expressed in
comparable ways. For example, design methods can be seen as
ordering and clustering engineering decisions with respect to time,
as well as providing various notations that help to make the
current state of the design more visible. We will say a bit more
about such possible applications in our discussion.
In this section, we have laid out the basic definitions of our
theory, and shown how some interesting “wisdom” about
coordination in software engineering can be expressed. We have
not yet said anything about deriving testable hypotheses, which
we address in the next section.

2.3 Additional Assumptions
Ultimately, it must be possible to bring observation to bear in
order to test hypotheses derived from any theory. If this is not
possible, the theory is either vacuous or tautological, and
therefore uninteresting.
In the previous section, we have hinted at some additional
assumptions that are necessary in order to render concrete
predictions from the theory we propose. In this section, we will
develop these assumptions more explicitly. The first set of
assumptions concern the effects of making infeasible choices (i.e.,
assignments for which the feasibility function evaluates to 0).
The possible effects of infeasible choices are as follows:
A1. defects, faults, errors, failure to complete project (if the

infeasible choice is never reconsidered)
A2. rework (infeasible choice is identified and changed, and

perhaps other decisions dependent on it must also be
changed)

A3. longer cycle time (introducing then changing infeasible
choices will cause the project to take longer, since rework
consumes time)

A4. lower productivity (introducing and changing infeasible
choices will lower productivity, since rework consumes
resources)

A second set of assumptions is somewhat more speculative, and
has to do with factors that make infeasible choices more likely or
less likely. The fundamental underlying ideas are 1) that when the
person who has responsibility for a decision is aware of the
constraints that relate that decision to other decisions, it is more
likely that the decision maker will make a feasible choice, and 2)
more frequent communication among decisions makers who are

making mutually constraining decisions increases the likelihood
of making a feasible choice. Each of the assumptions listed below
should be read to implicitly include a “ceteris paribus” clause, i.e.,
in each case, we assume that all other relevant factors are held
equal.
Feasible choices for mutually constraining decisions are more
likely to be made when:
A5. the decisions are made by a single person, or fewer people

(rather than more people);
A6. they are made by people in frequent (rather than infrequent)

communication with each other; and
A7. the constraints that bear on a decision are highly visible to

the decision maker.
While we treat these assertions as assumptions for our present
purposes, it would be desirable to test many of them in future
research. Such a dual role of an assertion as both assumption and
testable hypotheses is not uncommon in scientific contexts. For
the purposes of one experiment, for example, one might simply
assume the validity of the readings of a particular measuring
instrument or procedure. If any doubt arises as to these
assumptions, however, it is reasonable to perform additional
experiments for the purpose of testing these assumptions. It is
seldom possible to test the entire interrelated complex of
assumptions and hypotheses involved in a line of experiments at
once.
One way to test our formulation, e.g., of Conway’s Law, would be
to show that higher Conway numbers are associated with more
rework, longer cycle time, or other indicators of the presence of
infeasible decisions. Yet it is very difficult to actually determine
the Conway number of a development, since it is generally not
possible to completely specify the set of engineering decisions and
the constraints among them for any project of significant size.
Given our definition of a development’s Conway number,
however, this would be required in order to directly measure a
Conway number.
While such a complete enumeration of decisions and constraints is
generally not feasible, it may often be feasible to establish that
one system, or one set of changes to a system, has a higher
Conway number than another system or set of changes. If it is
possible to eliminate or account for other possible sources of
variation, it may be possible to make relevant measurements, e.g.,
of rework, cycle time, or productivity, and test hypotheses about
such things as Conway numbers on this indirect basis. Supporting
such indirect tests was, of course, a primary motivation in
introducing the assumptions in this section.
In this section, we have considered various assumptions that we
find necessary in order to derive testable hypotheses from the
theory, and to perform observations relevant to those hypotheses.
In the next section, we describe the methods we employed in a
preliminary test of the Conway and Parnas hypotheses.

3. EMPIRICAL METHODS AND RESULTS
We have two aims in designing empirical procedures to test
hypotheses derived from our theory. First, and most importantly,
we intend this to be a proof of concept, in the sense that we
illustrate that such hypotheses are testable. Second, we generate
evidence that is relevant to the substance of the theory itself,
although we do not claim that our results are final or definitive.

142

In broad strokes, our method is as follows. We use data from a
modification request (MR) system from a development project at
Avaya Technologies. Using this MR data, we construct two
graphs, one that shows the flow of work among individuals, and
one that shows the organization of files in terms of which files
tend to get changed together. We extract scalars from these
graphs to represent theoretically relevant properties, and use these
scalars in regression analyses to predict important quantities such
as productivity and cycle time. We use assumptions from section
2 and the results of these regression models to test two ETC
hypotheses. We spell out the details of this method in the
remainder of this section.

3.1 Project and Site
We study embedded software for a communications device with a
user interface, running on a popular embedded operating system.
The product had significant changes in hardware and substantial
increase in functionality leading to extensive software
development over the range of two years. At the time of the
writing the product is approaching its fourth major release.
More than 30 active developers participated over more than two
and a half years modifying approximately 5,000 files. In all, the
changes included more than 10,000 delta adding more than 3
million lines of code for this system. Most of the developers were
located in one site in the eastern United States and a very small
group of developers were located in Australia.
Most of the code was written in C language, some also in Java and
C++, and assembly language. One release, for example, contains

approximately 1 million lines of code (LOC) of C and C++ and
200,000 LOC of assembly language, and 100,000 LOC of Java.

3.2 Modification Requests
Modification request (MR) and version control systems (VCS) are
used by virtually all software projects to coordinate the work of
the project participants and to allow parallel work on several
releases and patches. This dataset is a typical example of the data
that is usually available from VSC and MR systems.
A slightly simplified version of an MR process follows. The
developers are assigned (or, more often, assign themselves) a new
feature or a defect to work on. In case of defects, they investigate
the problem, make necessary changes and submit an MR for
integration. In case of new features, additional tasks such as low
level design and design review are performed prior to coding.
After coding is complete the MR is submitted for integration by
the developer. If the MR prevents system build, it may be rejected
by the integrator and then the developer makes needed
modifications and resubmits it. The code inspection may be done
afterward and any issues are resolved with additional MRs. The
MRs may originate from customers, testers, or developers
themselves. Often developers will find an issue to work on in the
regular course of their activities. In some cases developers
reassign MRs to other developers if they can not resolve the
problem on their own. More than half MRs do not lead to
changes. They include such things as duplicate reports, and
problems that are not reproducible or that are not high enough on
the priority list.

gray: tester->developer
black: developer originator -> developer implementor

dashed: assignement of MR to another person

icn

cho

ar

ta

gus

ude

hny

urt

uif
ana

uan

rti

 to
kha

n i

o i

 in

p i

ser rth

ome

m1

ild

rkc

g t

cke

vin dan

ssar t

rrj

jsi

th

mac

e t

s t

f t

l t

mit

i t

eenmal

emil
lam
Figure 1. Graph of work flow constructed from modification request

143

The product in the analysis used Sablime configuration
management system that uses SCCS version control system to
manage code changes. We extracted workflow relationships by
processing Sablime MR history file for each change. This file
contains the history of all transactions on an MR, including
information about by whom, when, and what fields were changed.
We extract MR creation, all MR assignments, and all MR
submission/rejections.

3.3 Graph Construction and Hypotheses
We used the MR data to construct two types of graphs that would
allow us to generate measures of the properties of interest. Our
theory of engineering decisions focuses on how the conditions
under which engineering work is done influences important
outcomes. The outcomes (e.g., cycle time, productivity, quality,
rework) can often be measured for individual MRs.
On the other hand, the factors that influence these variables
operate at the larger scale of how work relates to coordination
among individuals and is distributed across software modules. In
order to generate measures of these independent variables, we
constructed two types of graphs that allow us to capture the
important conditions under which the MR work was done.

3.3.1 Empirical Workflow Graph
From a theoretical point of view, one would expect, from
assumption A5, that the more people with whom one must
coordinate one’s mutually-constraining engineering decisions, the
more infeasible decisions one is likely to make, hence by
assumption A4, the less productive one is likely to be.
In order to investigate this prediction, we constructed an empirical
workflow graph. In this directed graph, each person involved in
the project is represented as a node. Arcs represent instances of
workflow, i.e., when some type of work on the MR (e.g., MR is
created, assigned, or some code is committed in order to resolve
the MR) by one person is followed by work on the same MR by
another person.
So, for example, if person A creates an MR, and the next recorded
activity is that person A assigns the MR to person B, and person B
subsequently contributes code to the MR, we record an arc from A
to B. If person B assigns the MR to person C, we record an arc
from B to C. The workflow graph is shown in Figure 1. Each
person is shown as a node: square nodes represent testers, oval
nodes represent developers, and diamond nodes represent
developers who reassign significant portion of their MRs to other
developers, i.e., have worked as change coordinators deciding
whom to assign unassigned MRs. The gray links indicate a
connection from a tester who raises an MR to a developer who
works on it. The dashed links indicate MR reassignments among
developers, and the black links indicate MRs created by
developers and assigned to another (or the same) developer. The
thickness of links is proportional to the square root of the number
of MRs, and direction of the link is in the direction of workflow.
While the appearance of the graph is cluttered, one can see, for
example, that testers typically assign MRs to a particular group of
developers. Most MRs are raised and solved by the same
developer. Some, but not all, developers work on assignments.
From this empirical workflow graph, we derive several relevant
measures. For each node (i.e., person) in the graph, we count the
number of MRs the person assigned to him/herself (self), the

number of MRs assigned to a person by others (in), the number of
MRs assigned by a person to others (out), the total number of
individuals who assigned at least one MR to a person (inDegree),
and the total number of others to whom a person assigned at least
one MR (outDegree).
The inDegree variable is the best indicator of the number of
people whose work constrains a given developer’s decisions. If I
receive work handoffs from many different people, I will increase
the likelihood that I will make infeasible decisions. (Handing
work to additional people should not have a similar effect on my
productivity, although my involvement will presumably generate
more constraints on the decisions of those to whom I make the
handoff).
We are able to estimate productivity from our data (details below),
which gives us hypothesis 1:
H1: Developers with higher inDegree (more people assigning
work to them) will have lower productivity.

3.3.2 Work Modularity Graph
If engineering decisions concerning one module have no effects
on engineering decisions in other modules, then all relevant
constraints are revealed by looking only at a portion of the system
(the module) rather than the whole system. The constraints
should therefore be much more visible to the developers, which
(by assumption A7) will lead to fewer infeasible decisions. By
assumption A3, fewer infeasible decisions should lead to shorter
cycle times.
In order to investigate this prediction, we constructed a work
modularity graph which partitions the code into empirically-
derived modules (see [18]) to investigate the properties of MRs
where all of the work occurs within a single module and those that
require work in more than one module. In this graph, files are the
nodes, and edges are drawn between nodes whenever those files
are both modified in order to perform the work for a single MR.
Files are clustered into two modules (one is shown with a gray
background) based on an algorithm that minimizes the number of
edges between files in different modules.
Thickness of the link represents the square root of the number of
MRs. Figure 2 shows only links and files that these links touch
where links contain more than 8 MRs within a module and more
than 3 MRs for links that cross module boundaries. These
constraints are needed to produce a small figure that could be
read. The file names are converted to random three letter
combinations.
We construct modules on this empirical basis rather than some
other basis, such as directory structure, in order to perform a more
meaningful test of modularity in the Parnas sense [20], i.e.,
modules where changes or work-items are contained within a
module. Modules defined around directory structure often do not
have this property, therefore using the modules defined by
directory structure would not bear in any clear way on the theory.
The reason for this difference, of course, is the information-hiding
property of modules.
Given that we can measure the cycle time, or interval, for MRs
(see below), we have hypothesis 2:
H2: Modification requests that require work in different modules
will have longer cycle times than modification requests that
require work in only a single module.

144

Cluster

Nework among files
induced by MRs touching

more than one file

wor

npu

wos

ard rap

roj

sag

rok

TIn

com

nfi

ned

Dir

all alm

BA.

ned

BDo

WBE

BAu

BHi

rol

NII
pp.

ppf

otd

lst

ain hon

pee pef

.cp

Udp

aln

afb

alp

ins
tha

TEv

tlo tlo

inS inA

ot. fig

pti

afc

Top

ont

keu kew

Figure 2. Graph of file and module structure.

3.4 Statistical Models
3.4.1 Productivity and Coordination
The predictors in the model are shown in Table 1 below. We have
transformed variables by square root transformation to obtain
more Gaussian distributions of the variables.
In the regression model below, the response is productivity, which
we measured as the number of MRs divided by the total time
participating in the project. Other measures of productivity are
possible (e.g., lines of code added, number of commits or deltas).
However, many MRs that do not result in changes to the code
involve considerable investigative work, e.g., to try to reproduce
an error, or to understand how the code works or is supposed to
work). For this reason, we decided that measures based solely on
changes to the code could not adequately reflect these sorts of
productive work.
Table 1. Variables used in regression model for productivity.
self Square root of the number of MRs initiated and

assigned by a person to him/herself

in Square root of the number of MRs assigned to the
person

out Square root of the number of MRs assigned by the
person

inDegree Square root of the number of individuals who
assigned MRs to the person

outDegree Square root of the number of individuals who were
assigned MRs by the person

The first factor is MRs a developer creates and completes and
second is the number of MRs assigned to a developer. These

factors represent aspects of individual productivity. The number
of MRs that the developer assigns to other people is the next
factor. This covariate might decrease productivity, since developer
has to spend time to assign these MRs but they are not counted in
the individual productivity number. The last two factors are the
number of individuals assigning the MR to a person (i.e., the
variable our hypothesis is concerned with) and the number of
individuals that the person assigns MRs to. The results are in the
Table 2 below.
The results indicate that productivity of an individual developer
significantly increases (unsurprisingly) with the number of MRs
they resolve (selfMr and inMR), and significantly decreases, as
our hypothesis H1 predicts, with the number of people who assign
MRs to them (inPeople). This appears to indicate that the more
people whose work has an effect on a given developer’s work, the
lower the productivity of the given developer. (The inspection of
multicolinearity, normality, and residuals showed nothing
unusual. The multiple R-squared of .69 indicates a good fit of the
model to the data.)

Table 2. Regression performed on productivity, using
variables from the empirical workflow graph.

Variable Coefficient Std. Error t value Pr>|t|

Intercept 6.4 0.96 6.7 <0.001

self 0.47 0.18 2.7 0.01

in 1.16 0.32 3.6 0.001

out 0.42 0.82 0.5 0.6

inDegree -2.1 0.68 -3.0 0.006

outDegree -1.1 1.4 -0.8 0.41

3.4.2 Cycle Time and Modularity
Here we are looking at the interval for the MRs that involve
changes to code. We have selected a large module using
globalization techniques [18]. The module contains 257 files out
of total 872 files in the system and about four percent of MRs
touching the files in the module also modify files outside the
module.

Table 3. Predictors used in regression model for cycle time.
Other indicator if the MR was created not by

developer

Nreleases number of releases the MR is included

Nfiles Logarithm of the number of files MR touches

Developer developer resolving MR

Multi-mod indicator of MR crossing boundary of a
module

The interval is modeled by first including factors that are likely to
affect the interval and then adding the factor that we would like to
test. The first covariate identifies if another person has created the
MR (this factor is likely to increase the interval because of the
need to communicate the issue to another person and has been
observed previously [12]), how many releases MR was included
in (indicating a problem serious enough to be fixed in older or
newer releases and the dependency issues associated with
changing code in multiple releases), number of files touched that
indicates the complexity of the issue, the identity of developer that

145

may affect the time it takes to solve the problem, and, finally, an
indication if the MR crossed the module boundary. In general, one
would expect changes that cross module boundaries (in
comparison to those that do not) to require understanding of the
module internal structure as well as its surroundings.

Table 4. Regression performed on variables from the work
modularity graph.

Variable Estimate Std.
Error

t value Pr(>|t|)

(Intercept) 11.3 0.24 46.7 < 0.001

Other 2.46 0.098 24.9 < 0.001

nReleases 1.04 0.11 9.3 < 0.001

NFiles 0.18 0.05 3.3 0.001

Multi-
mod

0.41 0.19 2.2 0.027

(The inspection of multicolinearity, normality, and residuals
showed nothing unusual, and the multiple R-squared of .631
indicates a good fit. The 27 regression coefficients, one for each
developer, are excluded because of space considerations. They
ranged from -1.2 to 1, with mean 0 and median -0.1.)
This result supports H2.

4. DISCUSSION
Our empirical results illustrate initial steps toward validating our
theory. Before we have a high degree of confidence that our
formulation of the Parnas and Conway effects is really supported,
we will need to conduct additional studies, both replications and
extensions. We regard this as a promising start that merits further
consideration of how other ways of clustering, sequencing,
visualizing, and partitioning engineering decisions influence
outcomes.
As we mentioned in the introduction, we suspect that the bare
bones ETC theory presented here can be extended in various ways
to represent other important coordination issues. For example,
one could represent coordination effects of different ways of
ordering design decisions by examining the cardinality of the
effects of the decisions. Under some circumstances, for example
when engineers fear that the effects of early decisions are difficult
to discern, one might want to make choices early on that have
minimal effects. This represents a strategic choice not to foreclose
choices for future decisions more than necessary. In other
circumstances, one might want to make early choices with
maximal effects in order to reduce the design space as much as
possible and simplify future decisions. Different design methods
can be seen as prescribing standard orderings of engineering
decisions that embody these sorts of tradeoffs.
For purposes of illustration, consider Michael Jackson’s “problem
frames” [15]. By adopting, say, a high level decomposition
consisting of “simple workpieces” and “display” problem frames,
there are several effects relevant to coordination among decisions.
First, such “high level” decisions (i.e., decomposition into these
two known frames) can be seen as making many individual
decisions at once, and doing so in a way that (one hopes)
introduces no infeasible choices. Second, the state of the
engineering design space after the “high level” decision, i.e., the
set of all decisions not yet made and the constraints on those

decisions, is partitioned such that decisions concerning one
problem frame have few effects (all of which should be explicit
and highly visible -- see below) on decisions concerning the other
problem frame. With appropriate assignment to teams, it permits
one to take advantage of Conway’s Law.
Another area we believe is ripe for future research is the
“visibility” of the project’s current state, where current state is the
set of decisions not yet made and their remaining feasible choices.
If one considers a graph where the decisions are nodes and
constraints are edges, one might speculate that visibility for any
given engineer is a function of a) the number of nodes reachable
from the nodes representing the decisions assigned to a developer
(larger number of reachable nodes means more one needs to be
aware of), b) the predictability of the choices for decisions that are
reachable but not assigned to the given engineer (high
predictability means guesses or assumptions about what other
engineers will decide are likely to be correct), and c) the form,
content, and clarity of information about current project state.
While we regard ETC as promising, these results are clearly in
need of further test. Since many projects use modification
requests in a similar way, the techniques we employ can be
applied to data from many settings. We would also like to see
tests of many more hypotheses derived from our theory, in order
to determine if in fact it provides a useful, empirically valid view
of coordination in software engineering. We also note that while
we consider our assumptions to be very plausible, they require
independent empirical tests in order for the theory to be validated.
The assumptions provide a critical bridge between theory and
observation, and they should be subjected to rigorous tests. As
we said in the introduction, empirical tests of theories, as opposed
to individual hypotheses, require a program of research, on which
we have now just embarked.

5. CONCLUSION
This paper makes three contributions. First, we formulate an
empirical theory of coordination that is precisely specified, and
which can account for many important phenomena in software
engineering. Second, we show how this theory, when used in
conjunction with several explicit and plausible assumptions about
the possible effects of infeasible choices and the circumstances
likely to lead to infeasible choices, generates testable hypotheses.
Finally, we performed empirical investigation of two hypotheses
derived from the theory.
We believe that coordination is an enormously important aspect of
software engineering, where development and testing of empirical
theory is vitally important in order for research to progress. We
are convinced that many areas of software engineering would
benefit from development and testing of empirical theory. We
offer our theory as an example that we hope will stimulate
discussion, and lead to further development and testing of
empirical theory in coordination and other areas where we need to
achieve a better understanding of the contingent properties of
important phenomena in software engineering.

6. ACKNOWLEDGEMENT
The authors wish to acknowledge support through the High
Dependability Computing Program from NASA Ames
cooperative agreement NCC-2-1298.

146

7. REFERENCES
1. Basili, V.R., The Role of Experimentation in Software

Engineering: Past, Current, and Future. in 18th International
Conference on Software Engineering (ICSE 18), (Berlin,
Germany, 1996), IEEE Computer Society Press, 442-449.

2. Basili, V.R., McGarry, F.E., Pajerski, R. and Zelkowitz, M.V.,
Lessons learned from 25 years of process improvement: The
Rise and Fall of the NASA Software Engineering Laboratory.
in International Conference on Software Engineering,
(Orlando, FL, 2002), ACM Press, 69-79.

3. Brown, J.S. and Duguid, P. Knowledge and organization: A
social-practice perspective. Organization Science, 12 (2). 198-
213.

4. Campbell, D.T. and Stanley, J.C. Experimental and Quasi-
Experimental Designs for Research. Houghton Mifflin,
Boston, MA, 1963.

5. Conway, M.E. How Do Committees Invent? Datamation, 14
(4). 28-31.

6. Crowston, K. A taxonomy of organizational dependencies and
coordination mechanisms. in Malone, T.W., Crowston, K. and
Herman, G. eds. Tools for Organizing Business Knowledge:
The MIT Process Handbook, MIT Press, Cambridge, MA, in
press.

7. Curtis, B., Krasner, H. and Iscoe, N. A Field Study of the
Software Design Process for Large Systems. Communications
of the ACM, 31 (11). 1268-1287.

8. Dellarocas, C. A Coordination Perspective on Software
Architecture: Towards a Design Handbook for Integrating
Software Components Center for Coordination Science,
Massachusetts Institute of Technology, Cambridge, MA,
1996.

9. Durfee, E.H. Organisations, Plans, and Schedules: An
Interdisciplinary Perspective on Coordinating AI Systems.
Journal of Intelligent Systems, 3 (2-4). 157-187.

10. Gelernter, D. and Carriero, N. Coordination languages and
their significance. Communications of the ACM, 35 (2). 97-
107.

11. Herbsleb, J.D. and Grinter, R.E., Splitting the Organization
and Integrating the Code: Conway’s Law Revisited. in 21st
International Conference on Software Engineering (ICSE 99),
(Los Angeles, CA, 1999), ACM Press, 85-95.

12. Herbsleb, J.D. and Mockus, A. An Empirical Study of Speed
and Communication in Globally-Distributed Software

Development. IEEE Transactions on Software Engineering,
To appear.

13. Hollan, J., Hutchins, E. and Kirsh, D. Distributed Cognition:
Toward a New Foundation for Human-Computer Interaction
Research. ACM Transactions on Computer-Human
Interaction, 7 (2). 174-196.

14. Hutchins, E. The Technology of Team Navigation. in
Galegher, J., Kraut, R.E. and Egido, C. eds. Intellectual
Teamwork, Lawrence Erlbaum, Hillsdale, NJ, 1990, 191-220.

15. Jackson, M. Problem Frames. Addison-Wesley, Boston, MA,
2001.

16. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W.,
Hoaglin, D.C., Emam, K.E. and Rosenberg, J. Preliminary
Guidelines for Empirical Research in Software Engineering.
IEEE Transactions on Software Engineering, 28 (8). 721-734.

17. Malone, T.W. and Crowston, K. The interdisciplinary theory
of coordination. ACM Computing Surveys, 26 (1). 87-119.

18. Mockus, A. and Weiss, D.M. Globalization by Chunking: A
Quantitative Approach. IEEE Software, January - March.

19. Mook, D.G. In Defense of External Invalidity. American
Psychologist, April. 379-387.

20. Parnas, D.L. On the Criteria to be Used in Decomposing
Systems into Modules. Communications of the ACM, 15 (12).
1053-1058.

21. Perry, D.E., Staudenmayer, N.A. and Votta, L.G. People,
Organizations, and Process Improvement. IEEE Software, 11
(4). 36-45.

22. Reif, F. Fundamentals of Statistical and Thermal Physics.
McGraw-Hill, New York, 1965.

23. Simon, H.A. The structure of ill structured problems.
Artificial intelligence, 4. 145-180.

24. Tichy, W.F. Should Computer Scientists Experiment More?
IEEE Computer, 31 (5). 32-40.

25. Votta, L.G. and Porter, A., Experimental Software
Engineering: A Report on the State of the Art. in 17th
International Conference on Software Engineering (ICSE 17),
(Seattle, Washington, 1995), ACM Press, 277-279.

26. Walz, D.B., Elam, J.J. and Curtis, B. Inside a Software Design
Team: Knowledge Acquisition, Sharing, and Integration.
Communications of the ACM, 36 (10). 62-77.

27. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell,
B. and Wesslen, A. Experimentation in Software Engineering:
An Introduction. Kluwer Academic Publishers, Boston, 2000.

147

