HUMAN-COMPUTER INTERACTION, 1995, Volume 10, pp. 249-292
Copyright © 1995, Lawrence Erlbaum Associates, Inc.

Object-Oriented Analysis and
Design in Software Project Teams

James D. Herbsleb, Helen Klein, and
Gary M. Olson
University of Michigan

Hans Brunner
U S WEST Technologies

Judith S. Olson
University of Michigan

Joe Harding
Harding Consulting

James D. Herbsleb is a psychologist and computer scientist with an interest in
empirical research on process and technology innovations in software engineer-
ing; he is a Member of the Technical Staff at Software Engineering Institute,
Carnegie Mellon University. Helen Klein is a PhD Student in Computer and
Information Systems at the University of Michigan; she is interested in object
orientation and the user’s model. Gary M. Olson is a psychologist interested in
the contributions of cognitive, social, and organizational research to both the
design and evaluation of computer systems; he is a Professor of Psychology and
Director of the Collaboratory for Research on Electronic Work at the University
of Michigan. Hans Brunner is a cognitive psychologist with interests in user-sys-
tem dialogue management, multimedia learning systems, and the psychology of
computer programming; he is Director of the Cognitive Sciences group in the
Applied Research Department of U S WEST Technologies. Judith S. Olson is a
psychologist and information scientist with an interest in computer support for
group work; she is a Professor and Chair of the Department of Computer and
Information Systems in the University of Michigan Business School and a Profes-
sor of Psychology at the University of Michigan. Joe Harding is an anthropologist
with an interest in the ethnographic study of organizational culture; he is President
of Harding Consulting.




250 HERBSLEB ET AL.

CONTENTS

1. INTRODUCTION
1.1, Major Problems Faced by Software Design Teams
Communication and Coordination
Capturing and Using Domain Knowledge
Organizational Matters
1.2. Claims About Object-Oriented Design and Teams
Claim: OOD Enhances Communication and Coordination
Claim: OOD Helps to Propagate Application Domain Knowledge
Claims About How OOD Teams Should Be Organized
1.3. Goals of This Study
2. RESEARCH METHODS
2.1. Data
2.2. Analyses
3. RESULTS AND DISCUSSION
3.1. Highly Collaborative Nature of Design
3.2. Overall Issue Structure
3.3. Communication and Coordination
Time Budgeting and Frequency of Design Activities
Transitions Among Design Activities
Communication and Coordination at Project Level
3.4. Knowledge Dissemination
3.5. Organizational Matters
Role of Chief Architect
Interactions With Clients
4. IMPLICATIONS
4.1. Tools
4.2, Grain Size of Design Units
4.3. Interactions With Clients
4.4. How to Organize for OO
5. CONCLUSIONS

ABSTRACT

Software development poses enormous cognitive, organizational, and manage-
rial challenges. In this article, we focus on two of the most formidable of these
challenges and on the promise of object-oriented (OO) technology for addressing
them. In particular, we analyze the claims made about OO design (OOD) and (a)
dissemination of domain knowledge and (b) communication and coordination. In
order to address the validity of these claims, we conducted an in-depth observa-
tional study of OOD in an industrial setting as well as a series of interviews with
experienced OOD practitioners. Compared to similar projects using traditional
methods, our study found evidence in the OOD project for a reduced need for
clarification in design discussions; differences in participation, in how meeting
time is spent, and in the sequential order of design discussions; and a much greater



OOD AND SOFTWARE DESIGN TEAMS 251

tendency to ask why questions. We discuss the implications of these findings for
tools, grain size of design units, interactions with clients, and organizing for OOD.

1. INTRODUCTION

The design of large, complex software systems is necessarily a social
process. There are many ways in which people can be organized to do this,
and Brooks (1975) stressed how difficult and costly the coordination of
people can be. In modern organizations, ad hoc teams or work groups are
a standard organizational solution to assembling a collection of individuals
with the knowledge and skills required to carry out nonroutine tasks. In
our experience (Herbsleb & Kuwana, 1993; Kuwana & Herbsleb, 1993; G.
M. Olson, J. S. Olson, Carter, & Storresten, 1992), ad hoc teams are the
most common way in which software analysis and design are carried out
for all but the tiniest of software projects. But the gap between the general
prescription to form such teams and the effective use of such teams in real
work settings is very large. This is because design as an activity and
software as a product are among the most difficult intellectual endeavors
attempted by organizations.

In this article, we focus on those issues that are at the intersection of
cognitive and social processing in design teams. There are many reasons
why socially distributed intellectual work is difficult. A team must develop
shared understandings of the problem, of the application domain, and of
the emerging design. The overall task must be divided into parts so that
individuals or subgroups can work on them in parallel. Change must be
managed and knowledge of changes disseminated. Individual efforts,
which are partial or subproblem solutions, must be integrated, and the
entire design must be checked for consistency. All of this requires exten-
sive communication—not only by means of written and spoken language
but also by means of various artifacts such as diagrams and prototypes.
The internal workings of individual minds and the rich artifacts in the
environment are important objects of study, because they are the key
elements in carrying out the task. Studying the pattern of interactions
among these components, however, provides a better overall description
of the activity as a whole.

One way to talk about these factors is to use Hutchins’s (1990) descrip-
tion of them as systems of distributed cognition. Hutchins has studied in
great detail such routine but difficult intellectual tasks as team navigation
aboard Navy ships (Hutchins, 1990) and flight operations in an airline
cockpit (Hutchins, in press). Hutchins has examined the details of how the
individuals and the components of their material environment work to-
gether as cognitive systems. We do not provide the same kind of detailed
ethnography for our materials as he has, but we find the general metaphor



252 HERBSLEB ET AL.

of teams and their tools as systems of distributed cognition to be useful in
framing some of the issues.

Because software analysis and design are recognized as being extremely
difficult intellectual challenges, modern software engineering methods
attempt to provide various frameworks and tool sets for organizing the
work. One family of methods that is receiving considerable attention is
object-oriented (OO) methods. Numerous books and articles have ap-
peared recently providing prescriptions on how to use OO methods for
the analysis and design stages of software development. These proposals
are especially interesting because these methods are often proposed as
good solutions to just those problems of distributed cognition that make
team work difficult.

In the remainder of this introduction, we characterize the current state
of knowledge about how object orientation addresses the team aspects of
software development. We do this by reviewing:

* The well-known problems of team software development.

* The reasoning behind claims that OO design (OOD) technology
helps to solve these problems.

* The existing evidence that bears on these claims.

As we see later, the conclusion of this review is that the major problems
of team development are communication and coordination, acquiring and
sharing domain knowledge, and finding an effective organizational
schema. For each of these issues, it is possible to construct plausible
arguments for the advantages of object orientation. There is not much
relevant evidence, however, and the evidence that exists is not uniformly
supportive.

This review sets the stage for the remainder of the article. We use data
from seven sources—including projects in which OO methods were used
and others in which traditional methods were used—to examine the role of
object orientation in team software development. Our goals are to com-
pare the team aspects of traditional and OO software development and to
evaluate the claims made for the superiority of object orientation.

1.1. Major Problems Faced by Software Design Teams
Communication and Coordination

There is substantial evidence that problems in communication and
coordination are among the most troublesome and pervasive in software
development (e.g., Curtis, Krasner, & Iscoe, 1988; Krasner, Curtis, &
Iscoe, 1987; Walz, Elam, & Curtis, 1993). Furthermore, the ability of teams
and organizations to communicate and coordinate effectively has a major
impact on their ability to respond to other challenges, such as fluctuating



OOD AND SOFTWARE DESIGN TEAMS 253

requirements (Curtis et al., 1988). It is also clear that subtle features of the
work process (e.g., informal channels of communication) are extremely
important, particularly when projects are uncertain (Kraut & Streeter, in
press). These features are likely to be very important to the bottom line,
because poorly coordinated projects tend to be the ones in which the
eventual users are not satisfied with the product (Kraut & Streeter, in
press).

Another indication of the importance of communication and coordina-
tion in software development comes from G. M. Olson et al.’s (1992) study
of how software development teams from four projects in two organiza-
tions spent their time during meetings. It was found that about one third
of the total time was taken up with clarifying what was meant in response
to explicit questions. Furthermore, almost one fifth of meeting time was
taken up with meeting management and project management. These
numbers indicate that improving the efficiency of communication and
coordination holds enormous potential for savings.

In many contexts, communication through a variety of shared repre-
sentations (e.g., diagrams, checklists, text, and drawings) is crucial. The
importance of shared representations has been supported by informal
empirical studies, particularly in the context of user interface design
(e.g., Karat & Bennett, 1991). Careful laboratory studies of groups
performing design tasks have shown a significant improvement in the
outcome when a simple shared text editor was used in a face-to-face
design task, as compared to the outcome using only traditional tools
like paper and whiteboard (J. S. Olson, G. M. Olson, Storresten, &
Carter, 1993). So, there is ample reason to suspect that shared represen-
tations—and the tools that allow people to interact with them—are im-
portant in organizing software development efforts. Nevertheless, it is
unclear, in our current state of knowledge about team software devel-
opment, precisely what artifacts need to be shared and at what stages
the sharing should take place.

Capturing and Using Domain Knowledge

One of the major challenges to a distributed cognitive system en-
gaged in software design is effectively capturing and propagating do-
main knowledge through the development team. Malhotra, Thomas,
Carroll, and Miller (1980) observed that interactions between clients
and designers tend to occur in cycles as the client discusses goals and
the designer tries to refine them and move them toward a concrete
solution. In a study of upstream software development activities, Walz
et al. (1993) observed the difficulties software designers have in captur-
ing users’ task knowledge. Important aspects of the domain and of
users’ tasks very frequently went unrecorded and were forgotten—only
to be raised again, much later. One major cause of this was lack of



254 HERBSLEB ET AL.

application domain knowledge that would have allowed the team to
recognize the importance of information contained in orally ex-
pressed requirements and scenarios.

Curtis et al. (1988) identified the thin spread of application domain
knowledge as one of the most significant and pervasive problems in
large-scale software development. Although individuals often understood
the small part of the domain that was directly relevant to their own
software design work, the individual who was in command of the overview
and able to integrate this knowledge was rare, highly valued, and known
to exert enormous influence over the design. The basic difficulty is nicely
summarized in the often quoted statement by one of the system engineers
interviewed by Curtis et al.: “Writing code isn’t the problem, understand-
ing the problem is the problem” (p. 1271). Or, as Brooks (1987) put it, “The
hardest single part of building a software system is deciding precisely what
to build” (p. 17).

The problems arising from an inadequate understanding of the appli-
cation domain were observed by Curtis et al. (1988) at the team,
project, and organizational levels as well as the level of individuals. In
particular, managers who were unable to keep their domain knowledge
current reported difficulties. Additional problems emerged when differ-
ent organizations collaborated, because they often had incompatible
views of the domain, based on their own particular experience and
expertise. Curtis et al. concluded that managing learning of the applica-
tion domain is “a major factor in productivity, quality, and costs” (p.
1275).

Realizing the difficulty of the task of understanding what one should
design is apparently one of the hallmarks of software design expertise.
Jeffries, Turner, Polson, and Atwood (1981) found that expert software
designers tended to devote more effort to understanding a problem than
did novices. Novices typically produced suboptimal designs, in part be-
cause they rushed from an inadequate understanding of the problem into
development of the first solution that occurred to them.

Further evidence of the importance of domain knowledge arises
from an examination of minutes and videotapes of large software devel-
opment projects in three organizations. Herbsleb and Kuwana (1993;
Kuwana & Herbsleb, 1993) examined the questions that software engi-
neers asked one another during meetings that took place during the
software requirements and design stages. Herbsleb and Kuwana found
that by far the most frequent type of question was aimed at trying to
find out what the software was supposed to do. Questions aimed at
understanding user scenarios were also very frequent, particularly early
on in the definition of requirements. These results indicate that a
sufficiently detailed knowledge of the application domain and how the
software will function in that domain were the major sources of the
designers’ uncertainties.



OOD AND SOFTWARE DESIGN TEAMS 255

Organizational Matters

Another of the persistent problems in software development is how
project teams should be organized (e.g., Brooks, 1975). Organizational
theory supplies many possible ways to structure project teams—from tradi-
tional authoritarian hierarchies to unstructured individualism (see, e.g.,
Constantine, 1993). It is often suggested that factors such as the certainty
of the project (Galbraith, 1973) should guide the selection of organizational
structure and coordination mechanisms. For several historical and practi-
cal reasons, there has been relatively little empirical work comparing the
efficacy of various organizational structures for software development
teams (Curtis & Walz, 1990).

From the perspective of distributed cognition, one of the most import-
ant aspects of team structure is how it supports the creation, sharing, and
manipulation of representations, as nicely illustrated by Hutchins’s (1990)
navigation example. In order to coordinate the navigation task, the infor-
mation must be propagated by the team across representations in several
different media (e.g., instrument readings, logs, human voice) before end-
ing up as plots on a navigational chart. Although the task of software
development is much less routine than navigation, it also depends cru-
cially on the propagation of information across shared representations
(e.g., requirements documents, design documents, diagrams, plans, proto-
types, scenarios, source code).

In addition to routinely accomplishing the immediate task, the organi-
zation must arrange for training new personnel and for effective responses
to situations in which part of the process may break down. Both the
capacity for sharing representations and essential redundancy are made
possible by “open” tools and an “open” style of work (i.e., arrangements
are such that others can readily observe the execution of tasks). The less
experienced members can learn simply and naturally by watching the
open interactions and the uses of open tools that are going on around
them. Team members are also in a position to guard against one another’s
mistakes when someone in a particular role is overloaded or distracted.
These are very general considerations that point out the potential organi-
zational importance of open tools and open interactions.

1.2. Claims About Object-Oriented Design and Teams

Advocates of OO software engineering methods claim many advan-
tages for this approach. Many of these claims concern the technical
merits or cognitive advantages (Rosson & Alpert, 1990) of OOD. Sev-
eral of the most important claims about OO, however, address the team
aspects of software design—the topic of this article. We begin with a



256 HERBSLEB ET AL.

brief description of the distinguishing properties of OOD, which are the
basis of the claims.

The two major differences between traditional methods and OO meth-
ods are OO-style abstractions and the central role played by domain
modeling in OOD. The abstractions used in OOD differ from other kinds
of abstractions used in software design in that objects contain both data
and behavior, whereas abstractions in traditional methods tend to focus on
either data structures or processing but not both. OOD abstractions can
therefore encapsulate functionality inside the object (i.e., functionality is
available externally only through a well-defined interface). In addition,
OOD abstractions support inheritance relations, whereby objects acquire
attributes and behavior from abstractly defined classes.

Traditional methods and OOD differ not just in the primitives them-
selves but also in the particular way these abstraction primitives are used
in the design of a software system. OOD typically begins with a model of
the application domain, borrowing the concepts and vocabulary of users
and domain experts. This structure, insofar as possible, is left intact in the
design and even in the code itself. The claims discussed in the following
sections derive from the nature of OOD abstractions themselves as well as
from the style of development centered around a domain model.

Claim: OOD Enhances Communication and Coordination

Because a single representation underlies all stages of development,
communication among all the participants (i.e., users, designers, im-
plementers, maintainers) is claimed to be enhanced. Rumbaugh, Blaha,
Premerlani, Eddy, and Lorensen (1991), for example, claimed that the
“greatest benefits [of OOD] come from helping specifiers, developers, and
customers express abstract concepts clearly and communicate them to
each other” (p. 4). Similar remarks can be found in many other books
advocating OOD methods (e.g., Coad & Yourdon, 1991, p. 3; Jacobson,
Christerson, Johnsson, & Overgaard, 1992, p. 43; Martin & Odell, 1992, p.
34; Wirfs-Brock, Wilkerson, & Wiener, 1990, pp. 10-11). The basic idea is
that, regardless of where one participates in the development process,
there is a core of the software design that remains the same and provides
a common vocabulary and set of concepts with which to discuss the
system. Because this conceptual core has its origins in the problem do-
main, it is ground with which users are also familiar. So, it improves their
ability to understand and provides a basis for their participation.

Communication and coordination should also be enhanced, goes one
argument, by the property of encapsulation of objects. As Wirfs-Brock et
al. (1990) pointed out, OOD encapsulation should reduce interactions
among parts of the system and allow the work to be distributed over
developers more easily. Designers do not need to communicate or coordi-
nate their activities with respect to the internal details of objects but should



OOD AND SOFTWARE DESIGN TEAMS 257

be able to focus their discussions on defining their functions and interfaces.
In ideal circumstances, so goes the argument, the need to communicate
and coordinate may even be reduced.

The claim about enhancing communication receives some support from
Bruegge, Blythe, Jackson, and Shufelt’s (1992) informal case study. In the
study, a class of 30 software engineering students collaborated on a single
project for one semester. Object modeling technique (OMT) diagrams were
used to ground discussions of alternatives within groups, and they often and
effectively served as the medium of communication among groups. Per-
haps most significantly, the clients, who were city and county planning
officials, had no training in the semantics of OMT and yet were able to
understand the models and even to suggest useful changes to the design and
present them in the form of OMT diagrams. Bruegge et al. also found
substantially reduced intergroup communication (measured in terms of use
of an electronic bulletin board during system integration) compared to a
similar but smaller project that used a combination of structured analysis,
structured design, and OOD techniques. Although software development
by students as a class assignment has many obvious differences from actual
industrial development, these data are interesting because the two projects
were quite similar in most respects except design method.

Although the use made of domain models in OOD is claimed to benefit
communication, developing a domain model presents its own potential
communication problems because developers who are ordinarily domain
novices must communicate with and learn from domain experts. Research
on expertise shows several dramatic shifts as one moves from being a
novice to being an expert (Chi, Feltovich, & Glaser, 1981). First, compared
to novices, experts tend to organize their knowledge in very different ways
(e.g., McKeithen, Reitman, Rueter, & Hirtle, 1981), and these ways of
organizing tend to be deeper and more abstract. One should expect that
developers will approach the modeling task with an incorrectly structured
model of the domain-rather than just an incomplete one. Second, the
knowledge of experts tends to be procedural in form rather than declara-
tive (e.g., Anderson, 1983). This means that it is more skill-like than
fact-like, it is hard to verbalize, and it makes heavy use of recognition
rather than analysis. This kind of implicit, procedural knowledge is often
very difficult to communicate. Simply talking about the domain is not
sufficient. These expert-novice differences strongly suggest that acquiring
the knowledge necessary to construct an accurate domain model and to
use such a model effectively in support of communication is a very
challenging task.

Claim: OOD Helps to Propagate Application Domain Knowledge

The basic argument that OO technology helps to spread domain knowl-
edge through the design team is that, because the shared representation



258 HERBSLEB ET AL.

has its basis in the concepts and vocabulary of the application domain,
knowledge of this domain is propagated throughout the project as the
participants in the development effort construct the domain model. It is
not expected that everyone will become a domain expert, of course, but,
if the model accurately reflects the application domain, and the design
team understands the model, then, arguably, a significant core of knowl-
edge should be disseminated.

Lubars, Potts, and Richter (1993, p. 13) made this sort of argument
when they claimed that development practices based on domain models
are one way of increasing the domain knowledge of a project team. OOD
textbooks variously describe this claimed advantage as encouraging “soft-
ware developers to work and think in terms of the application domain
through most of the software life cycle” (Rumbaugh et al., 1991, p. 4),
enabling “the designer to think like an end user rather than to think like a
computer” (Martin & Odell, 1992, p. 34), and encouraging “designers and
programmers to begin thinking about the real-world aspects of a problem
as early as possible” (Wirfs-Brock et al., 1990, p. 14).

There is some very informal evidence tending to show that this ap-
proach can be successful. For example, Champeaux, Anderson, and
Feldhousen (1992) reported that designing by refining analysis models was
generally viewed as “providing an invaluable anchoring of system design
to the problem being solved” (p. 384). Champeaux et al. reported that this
was regarded by the developers themselves as “a true breakthrough”
brought about by OOD techniques.

This mode of learning about the domain assumes that OOD abstrac-
tions provide a suitable medium. There is research that sheds some light
on the role of objects in human cognition, and it seems to suggest that
object-based representations may be better than representations based on
other sorts of primitives. In careful experiments, Gentner (1981; Gentner
& France, 1988) showed that, when people are asked to repair a simple
sentence with an anomalous subject-verb combination, they almost al-
ways change the verb and leave the noun as it is, independent of their
relative positions. This suggests that people take the noun (i.e., the object)
as the basic reference point. Models based on objects may be superior to
models based on other primitives, such as behaviors.

In work relevant to how easily designers can use inheritance hierarchies
of objects and classes to represent domain knowledge, Miller (1991) de-
scribed how nouns and verbs differ in their cognitive organizational form.
Nouns—and hence the concepts associated with them—tend to be organ-
ized into hierarchically structured taxonomies, with class inclusion and
part-whole relations as the most common linkages. These are also, of
course, the most common relations in OO representations. In human
cognition, these hierarchies tend to be fairly deep for nouns—often six to
seven layers. These hierarchies support a variety of important cognitive
behaviors, including the inheritance of properties from superordinate



OOD AND SOFTWARE DESIGN TEAMS 259

classes. In contrast, verbs tend to be organized in very flat and bushy
structures. This again suggests a central place for objects, in that building
inheritance hierarchies will mirror the way humans represent natural
categories only if the basic building blocks are objects rather than pro-
cesses or behaviors.'

On the other hand, human understanding of hierarchies tends to be
organized around basic-level classes (i.e., intermediate levels of abstraction
that form an anchor point for human classification and reasoning). As
described by Rosch (1978; Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1975), basic-level categories have large numbers of differentiating attri-
butes, whereas, at levels both lower and higher, the differentiating attri-
butes are very modest in number. This means that, in human conceptual
hierarchies, there are relatively few attributes at higher levels of abstrac-
tion to be inherited. The tendency in generating class hierarchies for
inheritance is to push attributes and behaviors as high as possible. But, to
the extent that this is successful, it will lead to hierarchies radically differ-
ent from those that both users and developers have naturally. Further-
more, construction of abstract classes that accurately mirror the real world
may entail the very difficult task of discovering new, deeper conceptual
structure in the application domain.

Claims About How OOD Teams Should Be Organized

In the preceding two sections, we discuss claims about the inherent
benefits of OOD. In this section, we look at claims about how an OOD
development effort should be organized in order to realize these benefits.
Many claims focus on the development organization as a whole—suggest-
ing, for example, that traditional organizational cultures that focus on
projects must be replaced with a culture that focuses on components
(Meyer, 1992). This new organization may require new roles, such as
application engineer (Nierstrasz, Gibbs, & Tsichritzis, 1992), to explicitly
assign responsibility for extracting and representing domain knowledge in
a useful form. New life cycle models have also been proposed to explicitly
incorporate reuse of classes and a highly iterative development style (e.g.,
Henderson-Sellers & Edwards, 1990).

At the level of the development team, there have been several sugges-
tions about appropriate structures and roles. Booch (1991), for example,
identified four kinds of roles on the development team (i.e., system archi-
tects, class designers, class implementers, and application programmers).
It is particularly crucial, of course, to ensure that a coherent system
architecture is maintained throughout the process. It is very often recom-

1. Interestingly, a thesaurus, which attempts to provide an index to a broad
range of knowledge and which is set up in a hierarchy, is organized by nouns.



260 HERBSLEB ET AL.

mended that one or more highly skilled “visionaries” (Booch, 1991) who
are widely respected by the team assume this role and that the project
manager be “tightly coupled” to this group (Jacobson et al., 1992).

1.3. Goals of This Study

Not much empirical evidence exists that effectively tests the value of
software methods (Fenton, 1993). As the preceding section shows, al-
though there is some support for some claims, there is good reason for a
healthy dose of skepticism as well. Our goals are to understand the impact
of OOD on the distributed cognitive aspects of software design and to
begin to assess the claims about the ways in which OOD is thought to
enhance the functioning of software development teams. In particular, we
look at:

* Patterns of communication and coordination, particularly in design
meetings.

* Dissemination of domain knowledge, primarily as revealed by the
questions developers ask one another.

* Design team organization and leadership.

We approach this task primarily with an in-depth observational study of
software development in an industrial setting. We also compare these data,
whenever possible, with data from our previous research on software
development, in which traditional design methods were used. We also
conducted interviews with other industry users of OO methods to help us
put the findings from the observational study in perspective. The details of
the data and of the methods used are presented in the following sections.

2. RESEARCH METHODS

2.1. Data

We address these questions with data from seven sources, some of
which are new and some of which have been analyzed for other purposes
elsewhere. Figure 1 summarizes the kinds of data we have from each
source.

00D Project. We observed an OO development project at U S
WEST Technologies. The project used OOD techniques to develop an
architecture to support development of a variety of distributed multimedia
applications. We observed the project for 8 months—from project an-
nouncement to delivery of the Phase 1 architecture. The project group
included a project leader, a chief architect, from 4 to 6 developers, and a



OOD AND SOFTWARE DESIGN TEAMS 261

Figure 7. Kinds of data available from various sources.

Data Source

Time Weekly
Sheets of All Videotapes Minutes of Interviews  General
Project Activities  of Meetings Meetings of Participants Surveys
OOD project X X X
Traditional
project

A X

B X

C X

D X

E (Japan) X
Nine OOD sites X

few others called in for specific tasks, like testing and documentation. The
group members varied widely in their experience with OO methods—from
highly accomplished OO designers (e.g., the chief architect) to developers
who were altogether new to OO. The chief architect had developed a
system that was to provide some of the core design ideas in this system. As
a result, he spent considerable time explaining the previous system to
other team members.

The primary client for the project was internal. Because very high
priority was placed on supporting a wide range of applications, as opposed
to any single application, the client did not have much direct control over
the requirements of the project. The intended users of the architecture
were software engineers, so the (similarly trained) developers could imag-
ine scenarios of use that were indeed accurate analyses of needs.

Three kinds of data were collected from this project. First, we obtained
team members’ time sheets reporting their weekly time spent on require-
ments, analysis, design, coding, testing, and other activities. Team mem-
bers also noted how much of the time in these categories they worked
individually or in a group.

Second, we obtained 93 videotapes and 41 audiotapes of the meetings
that took place in this project—almost all of the encounters of more than
one team member throughout the 8 months. Six videotapes of meetings
were selected for in-depth analysis—meetings at which “design” was clearly
taking place, not project management or mere presentations of work done
elsewhere. The number of developers present ranged from 4 to 7 In
addition, three design meetings—one from very early in the project, one
from midproject, and one late in the project—were selected for extracting
questions (to be described).

Third, each week we conducted semistructured interviews with all of
the core members. We asked, among other things, what issues were



262 HERBSLEB ET AL.

important during the prior week. We videotaped and took detailed notes
of these interviews. The interviewee could request that the videotape be
terminated for a period of time, and all material was kept in strict confi-
dence, to be reported only in the aggregate. We call these interviews at U S
WEST weekly interviews to distinguish them from the very different field
interviews we conducted at other OOD sites.

Traditional Projects A, B, C, and D. We previously observed 10
meetings from four projects in which traditional software development
methods were used. The sites in which these projects were observed were
Andersen Consulting and MCC (G. M. Olson et al., Storresten, 1992; G.
M. Olson et al., in press). These projects and their analyses provide here a
comparison of some of the behavior in places where OOD is used and
where traditional methods are used. Like the meetings selected for analysis
described previously, these meetings were also primarily concerned with
design, and they spanned many of the same kinds of topics, such as user
interface design, network issues, and determining the feasibility of various
requirements. They involved about the same number of people (3 to 7).
From these projects, we have videotapes, which we analyzed in depth (as
described later).

Traditional Project E. 'We previously also analyzed the kinds of ques-
tions that arose in 38 meetings of a traditional software development team
in Japan (Herbsleb & Kuwana, 1993; Kuwana & Herbsleb, 1993). For
these meetings, we have minutes rather than videotapes. The minutes were
recorded by a scribe (a role that rotated among members of the develop-
ment team). The minutes were generally recorded a day or two after the
meeting by using detailed notes and other documents to reconstruct the
discussion.

Comparability of 00D Project and Traditional Projects A Through E.
Obviously, the conditions under which the software was developed in
the six projects differ in many respects. We compared data from the
projects for a variety of purposes. In order to aid the interpretation of
these comparisons, we discuss here several of the similarities and differ-
ences that seem most relevant to the comparability of these data
sources.

The most important attributes of these projects are summarized in
Figure 2. Most of the applications were tools, but the OOD project and
one traditional project were building architectures. Note that almost all
were quite similar in the intended uses of the software, in that all but one
were designed for other software engineers. Most projects, but not all,
were staffed by developers who ranged from novice to expert in the
development method being used.



OOD AND SOFTWARE DESIGN TEAMS 263
Figure 2. Comparison of project characteristics.
Project
Traditional
Characteristic (0]6))) A B C D E
Type of ap-  Distributed Client-ser- Reverse Knowledge Software Software
plication multime-  ver archi- engineer- base ed- design develop-
dia archi-  tecture ing soft- itor tool ment envi-
tecture ware tool ronment
Intended Software Software  Software Knowledge Software Software
users engineers engineers  engineers base ed- engineers engineers
itors, main-
tainers
Range ofex- Noviceto Allhighly Noviceto Noviceto Allhighly Novice to
perience expert experi- expert expert experi- expert
with enced enced
methods
Leadership ~ Technical Manager Manager Manager Manager Combined
roles lead and and tech-  and tech- role of
chief ar- nical lead  nical lead manager
chitect and tech-
nical lead

The difference that stands out most in Figure 2 is the leadership roles
in the OOD project. No other project had a role called chief architect. In
trying to understand this role, it is important to note that the role called
technical lead in the OOD project had much more of a management
component than did this role in other organizations. For example, the
technical lead was in charge of the weekly management-oriented status
meetings but did not attend the weekly technical-issues meetings, which
were run by the chief architect. The technical lead had the major
responsibility for securing resources, planning, tracking progress, and
setting milestones; the chief architect had the major responsibility for
the overall and day-to-day technical decisions. So, the role of technical
lead in the OOD project corresponds in many ways to that of manager
in projects A through E. In some respects, the role of chief architect in
the OOD project corresponds to that of technical lead in projects B, C,
and E. As the role was interpreted and enacted in the OOD project,
however, it also seemed to encompass a higher degree of responsibility
for and ownership of design decisions, with the goal of ensuring system
integrity.

Other OOD Sites. In order to add breadth to the data from our single
OOD case study, we interviewed several people from other companies
who had recently been through the experience of adopting OO methods.



264 HERBSLEB ET AL.

We interviewed both developers and managers of OOD projects. We
chose our interviewees according to the following criteria:

* Three or more years of experience using OOD techniques.

* Experience with systems through all phases of the life cycle of the
systems.

* Experience with one or (preferably) more OOD development ef-
forts of significant size (3 or more person-years).

* Use of some OOD development rationale or methodology.

The content of this interview was developed first by one 5-hr interview
with one development consultant who had been involved with three
medium-size OOD projects. From a large set of 54 potential questions, we
constructed a smaller set of 22 questions, the focus of which was to elicit
the interviewee’s experiences relevant to the utility of OOD in addressing
the problems of software development. Nine interviews were conducted
with people from a variety of organizations (consulting firms, utilities,
financial institutions, and manufacturing firms). These interviews, con-
ducted either in person or by telephone, lasted an average of 3.25 hr. We
refer to these as our field interviews in order to distinguish them from the
very different weekly interviews discussed earlier.

Although the interviewees drew on an extensive body of experience
with OOD in industrial settings, we want to point out that they were not
unbiased observers. They were often OOD enthusiasts who were commit-
ted to these methods. They were in general reporting their impressions,
which were not necessarily based on any objective measurements. Al-
though we believe that this source of data is a very valuable adjunct to our
detailed observational studies, one should bear these potential biases in
mind when interpreting the results.

2.2. Analyses

Time Sheets. As mentioned earlier, in the OOD project we observed,
the developers filled out weekly time sheets. The developers recorded the
number of hours spent in requirements, analysis, design, coding, and
testing. They also recorded how much time in each category was spent in
individual work and in group work. For the purposes of data analysis, we
combined the requirements and analysis categories because these are very
closely related and because the number of hours in each was quite small
relative to our other categories. When we refer to requirements, it should be
understood to include requirements analysis as well as requirements acqui-
sition. We calculated how many hours went into each type of activity
overall for the project. We also divided the 32-week project into eight
4-week periods so as to examine how activities changed longitudinally.



OOD AND SOFTWARE DESIGN TEAMS 265

Figure 3. Brief descriptions of 22 categories of activity in design meetings.

Category Description

Issues Major questions, problems, or aspects of the designed
object itself that need to be addressed

Alternatives Solutions or proposals about aspects of the designed
object

Criteria Reasons, arguments, or opinions that evaluate an

Project management

Meeting management

Summary

Walk-through

Digression
Goal
Other

Clarification of ______

(12 types)

alternative solution or proposal

Statements having to do with activity not directly
related to the content of the design, in which people
are assigned to perform certain activities, decide
when to meet again, report on the activity (free of
design content) from previous times, and so forth

Statements having to do with the orchestrating the
activity of the meeting, indicating that group
members are to brainstorm, decide (and vote), hold
off on a discussion, and so forth

Reviews of the state of the design or implementation to
date, restating issues, alternatives, and criteria

Gathering of the design so far or the sequence of steps
the user will engage in when using the design so far,
used to either review or clarify a situation; usually
follows the user’s task or the flow of data or messages
inside a system architecture

Joking, discussions of side topics, interruptions

Statement of the purpose of a group’s meeting

Time not categorizable in any of the above categories

Questions and answers in which someone either asked
or seemed to misunderstand; includes repetitions for
clarification, associations, and explanations;
clarifications serve to clear up misunderstandings
from other individuals; each clarification is coded
according to what is being clarified (e.g., clarification
of issue, clarification of alternative), so there is one
clarification category associated with each of the
preceeding 10 categories; there are two additional
types of clarification—clarification of artifact (stems
from confusion about things like diagrams and
design documents) and general clarification (not
associated with any of the above categories)

Note. Adapted from G. M. Olson, J. S. Olson, Carter, and Storresten (1992).

Videotapes of Meetings. The design discussions were analyzed using
the same categories and techniques used in previous research. Because
these categories, their definitions, and our means of establishing their
reliability were described in detail elsewhere (G. M. Olson et al., 1992), we
only summarize the definitions briefly here (see Figure 3).



266 HERBSLEB ET AL.

For the six meetings we selected for detailed analysis, we transcribed all
discussion and categorized it according to the scheme outlined earlier. We
analyzed the amount of time spent in each of the 22 categories of activity,
the number of episodes of each type of activity, and the frequencies of
transitions among these activities. In order to examine patterns of partici-
pation in these meetings, we also analyzed the amount of time spent
talking for each participant—both as a total and by activity category.

In addition to analyzing activities and transitions, we also constructed
design rationale graphs for each of the six OOD meetings (see G. M.
Olson et al., 1992). In these graphs, we identify the issues, the alternatives
proposed for each issue, and the criteria mentioned for each alternative
(see Figure 7 for an example of a graph associated with a single issue).
These graphs are not necessarily trees, because a criterion may bear on
more than one alternative. Constructing these graphs enables us to com-
pare some of the parameters of the OOD discussions with traditional-
method meetings.

We also extracted and analyzed the questions developers asked of one
another in a sample of three technical design meetings. Our coding
scheme was presented in more detail elsewhere (Herbsleb & Kuwana,
1993), so we only summarize it here. We extracted all 229 questions from
these meetings and, for each question, identified the farget-the thing,
event, or task about which the question was being asked. Targets form the
basic unit for most of our analyses. As with previous data sets we have
analyzed, about half (46%) of the questions had more than one target—for
a total of 338 targets.

For each target, we identified the attribute about which the question was
asked—whether who, what, when, why, or how was asked. Then we classi-
fied it according to the stage in the traditional software development life
cycle when it would be created (i.e., requirements, design, implementa-
tion, testing, and maintenance). We used standard criteria drawn from
industry guidelines and software engineering textbooks. Last, for the ques-
tions that had more than one target, we categorized the relations among
the targets as follows. Realize is the relation between some function and
the means of carrying it out (e.g., editing a piece of text might be a
function carried out or realized by cutting, pasting, deleting characters,
entering characters, etc.). Interface relations concern how targets com-
municate with one another. Evolve is a relation between a target and a
subsequent version of the same target. A question about whether or not
two targets are identical in some way has a samerelation. Last, questions
about persons assigned to tasks have task assignment relations.

Minutes of Meetings. All of the questions in the minutes of our sample
of 38 design meetings at NTT Software Laboratories were extracted and
categorized in the way already described.



OOD AND SOFTWARE DESIGN TEAMS 267

Weekly Interviews. As mentioned, members of the U S WEST team
were confidentially interviewed each week about the project generally and
about the concerns that were most important during the prior week. Using
detailed notes of these interviews, we tabulated the number of mentions of
each concern.

Field Interviews. The interviewer took detailed notes of each inter-
view, transcribed the notes immediately after the interview, and used the
transcripts to write summaries of interviewees’ answers to all of the ques-
tions. The responses were examined for common themes, and the number
of interviewees who took a particular position was tabulated. The unit of
analysis was 9 interviews rather than 13 interviewees because those inter-
viewed together almost always expressed a consensus and cannot be
considered independent sources of data.

3. RESULTS AND DISCUSSION

3.1. Highly Collaborative Nature of Design

We begin by reporting some basic parameters about where and when
the group work occurred in the project we observed. To begin to address
questions about the demands of distributed cognition for openness in tools
and communication, we examined how effort is allocated between individ-
ual and group work and how this mix changes for different tasks and over
time. In this section, we report on data taken from weekly time sheets that
asked these questions.

It is clear from Figure 4 that, over the life of the project, the overall
percentage of group work (i.e., summed across categories of activity) was
high but decreased fairly continuously from an initial value of about 50%
of all technical work to only about 10% by the end of the project. Figure 5
shows one component of this change. Activities traditionally associated
with later life cycle stages (coding, testing) tended to involve more individ-
ual work, whereas earlier stages (requirements, design) involved a larger
proportion of group work. In addition, as shown in Figure 6, each type of
activity also tended, in general, to move from a higher proportion of group
work in the beginning to a higher proportion of individual work toward
the end. As can be seen in both Figures 5 and 6, design activities tended to
have the largest proportion of group work overall, and this was the case for
almost every time period. Furthermore, as was not the case with other
activities, in each period but the last more than half of the time spent on
design was spent in group work.



268 HERBSLEB ET AL.

Figure 4. Percentage of time overall spent in individual and group work.
Each period is 4 weeks.

Hours of Technical Work
100%
90%
O group
80%1 B individual

70%

60% 1

50%
40%
30%
20%
10%

0%

period period period period period period period period
1 2 3 4 5 6 7 8

3.2. Overall Issue Structure

An example of a design rationale graph representing the discussion of
one issue at one meeting is shown in Figure 7. As already mentioned, we
analyzed every issue that arose in a sample of 6 design meetings in this
fashion. The basic parameters of issue discussions in the OOD project and
in a similar analysis of 10 design meetings in which traditional methods
were used (G. M. Olson et al., 1992) are summarized in Figure 8. We find
the degree of similarity startling. Although design using OOD methods
tends to involve a somewhat different distribution of design activities, as
we see later, the basic parameters of how many alternatives are discussed
for each issue are quite similar. The one difference evident in Figure 7 is a
suggestion that the OOD meetings had fewer issues for which a larger
number of alternatives (three or more) were considered.



OOD AND SOFTWARE DESIGN TEAMS 269
Figure 5. Hours spent in individual versus group work by activity.

Hours of Technical Work

3000 T
2500 +
2000 + B individual
O group
1500 +
1000 +
500 T
requirements design coding testing

3.3. Communication and Coordination

We addressed communication and coordination issues mainly by look-
ing at how developers spent their time in design meetings. We compared
both time budgeting (i.e., time spent in, and number of episodes of,
various design activities) and sequential structure of design activities.
Many of the findings suggest important differences in design discussions
when OOD and traditional methods are used. Some of these, primarily
our findings about clarification, have relevance to claims about OOD and
its role in supporting communication and coordination. Last, we report
some results from our field interviews that bear on these issues.

The time spent in the various activities and the transitions among them
are presented graphically in Figure 9. The area of the circle represents the
amount of time spent in each category of activity. The thickness of each
arrow indicates the frequency of transitions between categories. In order
to reduce clutter, only those transitions that account for .7% or more of the
total number of transitions are drawn. (The number of transitions rises
dramatically just below this cutoff.) For purposes of comparison, a simi-



Figure 6. Ratio of group work to individual work over time for each type
of development activity. Values above the dashed line indicate more time
spent in group work than in individual work. Each period is 4 weeks.

Group Work / Individual Work

4.5

—{3— design
—— reqirements
3.5T —4— coding

3 —O— testing

4

0+ . G = 4
period period period period period period period period
1 2 3 4 5 6 7 8

Figure 7. Example of a design rationale graph.

Issue Alternatives Criteria

P /l Not as typical ]

Selecting one deselects L
the others [—{ May forget they are there]
’
: “ . |Difficuit because of
Selections and Accumulate selections k Umultiple views |
deselections: W ~

window but not

What happens when \ Can't have selections

you click? Accumulate inside a <mmdm_
\|

across windows

General delete is difﬁcult]

- 1 Hard to do ]
Scenes handle own =

selections \ Provides framework

for all the others




Figure 8. Comparison of design rationale parameters of OOD meetings
and traditional-method design meetings.

Meeting

Parameter OO0D  Traditional
Median number of issues 10 10
Range of number of issues 6 to 24 1to 44
Modal number of alternatives per issue 2 2
Percentage of issues with one or no alternative 25 21
Percentage of issues with three or more alternatives 29 40
Percentage of alternatives receiving any explicit evaluation 63 63

Figure 9. Times and transitions in design activities in U S WEST OOD project.




272 HERBSLEB ET AL.

Figure 10. Times and transitions in design activities in traditional projects.

larly constructed diagram for 10 design meetings in which traditional
methods were used is reproduced in Figure 10. In both cases, clarification
is combined in the diagram with the clarified activity. In each circle, the
white portion is the activity itself; the black portion represents clarification
of that activity.



OOD AND SOFTWARE DESIGN TEAMS 273

Our previous analyses of times and transitions in design meetings in
which traditional methods were used revealed a remarkable degree of
similarity across different organizations and projects (G. M. Olson et al.,
1992). In broad outline, the times and transitions in the OOD meetings
generally resemble this pattern, as one would expect given that the groups
were engaged in essentially the same task. Work on design proceeds by
statement of an issue and discussion of alternatives, interspersed with
discussion of criteria that bear on the selection of alternatives. Departures
from design work are primarily to summarize or to carry out some form of
management activity.

Despite these broad similarities, there are several ways in which the
OOD meetings stand in striking contrast to the relatively homogeneous set
of traditional-method meetings. These differences are suggestive of how

OOD may influence the design process. The major differences associated
with OOD are:

* Fewer episodes of clarification in design discussions.

* More episodes of summary and walk-through.

» Earlier mentions of criteria in issue discussions.

* More integral role of summary and walk-through in design discussions.

Next we explore these differences in detail.
Time Budgeting and Frequency of Design Activities
Types of activity were distributed differently in meetings in which

traditional methods were used and in meetings in which OOD methods
were used,”® G*(15) = 152.95, p < .001. The standardized residuals (for the

2. The G? statistic is comparable in most cases to chi square. We used G?
because it is superior in some ways for fitting hierarchical models. The difference
reported here is also highly significant as determined by chi square.

3. We originally constructed a contingency table of 22 categories of activity x 2
conditions. An appropriate test of association would be a log-linear model that
includes only main effects. An association between variables would then manifest
itself as a significant interaction. We chose to eliminate the digression and clarifi-
cation-of-digression categories as theoretically uninteresting. In addition, in order
to calculate the appropriate statistics, it was necessary to partition the table and
consider only those rows and columns that did not include clarification of goal,
clarification of project management, clarification of meeting management, and
clarification of other because these were very infrequent in the data set, and their
inclusion generated many unacceptably small estimated values. (See G. M. Olson,
Herbsleb, & Rueter, 1994, for a discussion of the application of log-linear model-
ing to sequential data. See, generally, Fienberg, 1980; Gottman & Roy, 1990.)
Because of the necessity of partitioning the contingency table, we can claim a
reliable statistical association only with respect to the frequencies of the remaining
categories. We have insufficient data to reach any conclusions about the categories
we removed from the analysis.



274 HERBSLEB ET AL.

Figure 71. Statistical association between design method and frequency of
particular design meeting activities.

Method
Activity Category 00D Traditional
Issue -1.84 1.28
Issue clarification ~2.13 1.48
Alternative 1.51 -1.05
Alternative clarification -2.85 1.98
Criteria -0.74 0.52
Criteria clarification -3.11 2.17
Meeting management 1.61 -1.12
Project management -1.47 1.02
Goal -1.18 0.82
Summary 4.94 -3.43
Summary clarification 0.38 ~0.26
Walk-through 4.53 -3.15
Walk-through clarification -1.76 1.22
Other -2.61 1.82
Artifact clarification -1.83 1.27
General clarification -2.23 1.55

Note. Numbers are standardized residuals for the main-effects model.

main-effects model) give us an indication of which activity categories
contribute most heavily to this difference (see Figure 11). A particular
category contributes powerfully to the difference if its values for the two
conditions have standardized residuals with absolute values greater than 1
and are different in sign. From Figure 11, one can see that, with the
exception of summary clarification, on which the two conditions do not
differ much, each type of clarification® contributes to the difference, and
each is in the direction of higher frequency in the traditional meetings.

Examination of the residuals in Figure 11 reveals other categories that
contribute substantially to the overall difference in number of episodes in
various categories of activities. We generally think of issue, alternative,
and criteria as the core design categories, as work in design meetings
generally progresses by posing and resolving design issues. In these cate-
gories, compared to those of the traditional-method meetings, the OOD
meetings had more episodes of alternatives, fewer episodes of issues, and
a similar number of episodes of criteria. Another important departure
from the pattern we have seen in traditional-design discussions is a much
greater number of episodes of walk-through and summary in OOD
meetings.

4. We can conclude nothing, of course, about the clarifications not shown in
Figure 11 because we have insufficient data for these particular categories.



OOD AND SOFTWARE DESIGN TEAMS 275

In our sample of meetings, we can see a very similar pattern in the
amount of time spent in each category of activity. Because the unit for this
analysis is the meeting, we have only 16 observations (10 traditional, 6
OO) for each comparison. Because of this small sample size, it is not
surprising that ¢ tests do not reveal any statistically reliable differences. In
the meetings we examined, overall there was substantially less time spent
in clarification in the OOD meetings (14%) than in our previously ana-
lyzed meetings (33%). Also in accord with the analysis mentioned earlier,
a much larger proportion of time in OOD meetings was spent in summary
and walk-through. Together, summary and walk-through accounted for
almost twice the proportion of time in the OOD meetings (about 40%) as
in the traditional meetings (about 22%).

The overall pattern of results suggests that the quality of communica-
tion among members of the team was very high in general. There were
substantially fewer episodes of asking and answering questions about what
was meant. This is particularly significant in light of the fact that the
vocabulary and concepts used to describe the design were at the outset
unfamiliar to everyone except the chief architect. And, it seems very
unlikely that the relatively small proportion of clarification can be attrib-
uted to simplicity of the design issues. The technical issues involved in
designing a general architecture-level solution for the synchronization,
dynamic linking, network transport, data consistency, and user interface
problems inherent in distributed multimedia applications were extremely
complex.

Transitions Among Design Activities

Figures 9 and 10 give a global view of transitions among design activi-
ties in OOD and traditional-design meetings. This view shows that the
pattern of transitions among categories was broadly similar in the two data
sets. With traditional methods, design discussions began with issue and
iterated through alternatives—the discussion of each alternative often men-
tioning one or more relevant criteria. Summary tended to follow criteria
and precede issue, thus appearing to serve to terminate discussion of one
issue and lead to discussion of the next. This suggests that summary
functioned as a transitional category between design discussions.

The OOD meetings were significantly different in their distribution of
transitions,” G*(47%) = 144 .41, p < .001. Again, we can examine the stan-

5. The full table for this analysis is 22 antecedent categories x 22 consequent
categories x 2 conditions {traditional, OO). But, we were unable to analyze the full
table statistically because there were several categories of activity that were very
infrequent in both conditions, generating a table with many estimated values less
than 1. We selected only the eight most frequent categories of activity—issue,
alternative, criterion, clarification of alternative, meeting management, project



276 HERBSLEB ET AL.

dardized residuals generated by the main-effects model to identify which
transitions were most responsible for the statistical association and how the
frequencies of these transitions interacted with type of design method.
Again using values greater than 1 and different in sign as an indicator of
major contributors to the statistical association, we find several differences.

One set of differences in the sequential structure surround occurrences
of issue. In the traditional meetings, there is more of a tendency to move
from statement of an issue to an alternative. In the OOD meetings, on the
other hand, issue episodes tend to lead more often to discussions of criteria
and summary and directly to clarification of alternative. This suggests that
issues are sometimes addressed by first figuring out what properties a good
answer should have (criteria) before considering alternatives—a pattern
quite unusual in traditional design. This interpretation is reinforced by the
fact that there are also more transitions in OOD from criteria to alternative
and to clarification of alternative.

Another set of differences in sequential structure surround summary
and walk-through. In the traditional meetings, criteria are more likely to
be associated with walk-through and summary, both leading to and back
from criteria. The sequential relations also suggest that summary and
walk-through frequently play a transitional role, often leading to some sort
of management activity. In the OOD meetings, the connection of issue
and clarification of alternative to summary suggests that summaries play a
more integral role in exploring design issues and alternatives, rather than
criteria. These results are consistent with the idea that walk-through and
summary have different roles in the two sets of meetings.

Communication and Coordination at Project Level

An important theme in the responses of our field interviewees was that
OOD helps to focus communication—primarily on decisions affecting
object interfaces and placement of methods. These answers suggest that
OOD may ease coordination by helping developers work independently

management, walk-through, and summary—to use in the model. So, our conclu-
sions about a statistical association include only transitions among the categories
in this model; we have insufficient data to draw statistical conclusions about the
others. This reduced table has 8 antecedent categories x 8 consequent categories x
2 conditions. Because we are interested in testing for the presence of an association
between sequential structure (i.e., the interaction of antecedent and consequent
categories) and design method, the appropriate model includes all three main
effects and all three two-way interactions (see G. M. Olson et al,, 1994).

6. The degrees of freedom were 47 instead of the 49 one would expect given an
8 x 8 x 2 table because, despite our partitioning, there remained one 0-marginal
value, which, of course, resulted in a row with both cell entries of 0 and necessi-
tated the reduction in degrees of freedom. (See Fienberg, 1980, pp. 140-142.)



OOD AND SOFTWARE DESIGN TEAMS 277

and identify what needs to be communicated. This, of course, is one of the
intended effects of encapsulation in OOD.

Our interviewees unanimously endorsed OOD as a technique for
avoiding coordination problems while accommodating change. Several
causes of this advantage were identified by our interviewees. An obvious
one is encapsulation, which was generally successful in isolating internal
changes in an object or class from other objects and classes. Also, using a
domain model to structure the software was perceived as an aid to quickly
identifying those places where changes had to be made.

3.4. Knowledge Dissemination

In previous work (Herbsleb & Kuwana, 1993), we noted that there were
many proposals for making various kinds of information available to
software developers, including design rationales, information about the
application domain, and user scenarios. There are few data, however, on
what kinds of information developers actually need in order to do their
jobs. To investigate this question, we extracted all of the questions that
software developers asked one another in a sample of development meet-
ings in Japan (traditional project E) and in the United States (traditional
projects A, B, and C). We found a very surprising degree of similarity in
questions from these very different sources. One of the consistent findings
was that developers tend to ask few why questions (5% to 6%) about the
requirements or about the design. The most frequently asked type of
question concerned what the requirements were, but there were also many
questions about user scenarios, about defining modules and their inter-
faces, and about the detailed design of modules.

Against the background of previous results, where we found an aston-
ishing degree of similarity in data from very different sources, the results
from the OOD meeting are in some ways similar but in several respects
markedly different. The distribution of attributes differs significantly from
our previous results,” x*(4) = 35.43, p < .0001, primarily because many
more why questions were asked in the OOD meetings. In fact, the percent-
age of whys (15%) is roughly three times the percentage in the other two
data sets (5% to 6%). The distribution of stages also differs reliably, x*(2) =
59.59, p <.0001. The major difference is a much smaller proportion of
questions about things traditionally created in the requirements stage and
a much larger proportion concerning design-stage targets. As in our previ-

7. We show three data sets in the figures in order to make the similarity of the
two sources of data from traditional meetings clearly visible. The statistics reported
in the text, however, are a direct comparison of OO and traditional methods,
which collapse the U.S. and Japanese traditional-method data. The results are
comparable (i.e., highly significant) whether or not the data are collapsed in this
way.



278 HERBSLEB ET AL

Figure 712. Cross-tabulation of most frequent attribute-stage combinations
in targets taken from OOD and traditional meetings.

Percentage of Total Targets

50% 1
45% M Traditional methods
40% - [0 Object-oriented methods
35% 1 ‘
30%
25%
20% 1 ‘
15%
10%
5% T
0% - t + t t + |
| what why how | Lwhat why how |
requirements design

ous data, coding, maintenance, and testing are the source of very few
questions during upstream development activities.

In order to explore further the most frequent kinds of targets, we
constructed a cross-tabulation of the three most frequent attributes
(what, how, why) and the two most frequent stages (requirements,
design) and compared data from the OOD meetings to the combined
data from meetings in which traditional methods were used (minutes
and videotapes from projects A, B, C, and E). As Figure 12 shows, there
is a smaller percentage of targets in each of the requirements categories
in the OOD condition and a larger percentage in each of the design
categories. Particularly noteworthy is the fact that the OOD condition
has fewer requirement-why questions but many times more design-why
questions. So, the approximate 3:1 ratio of whys in OOD development
to whys in traditional development comes entirely from whys asked
about design-stage targets.

In order to begin to identify the extent to which the task (developing
an architecture vs. an application) and the method (traditional vs. OO)
contributed to the differences in types of questions, we constructed
three data sets as follows. Recall that the questions from traditional



OOD AND SOFTWARE DESIGN TEAMS 279

Figure 13. Cross-tabulation of most frequent attribute-stage combinations
in targets taken from three kinds of meetings.

Percentage of Total Targets - non-architectural,
traditional methods
60%
m architectural, traditional
method
50% ethods
O architectural,
object-oriented methods
40%

30%

20%

10%

0% ’

| what why how 0 what why how

requirements design

meetings were drawn from several projects that were developing applica-
tions (projects B through E) and one project that was developing an
architecture (project A). We culled the questions from project A to pro-
duce anapplication-traditionaldataset. Wethenselected another meeting
from project A, extracted and analyzed all the questions from it, and
combined them with the questions we already had from the other project
A meeting. This gave us an architectural task, traditional methods data set
consisting of 232 questions. The questions from the OOD meetings
formed the architectural task, OO method data set.

The results of comparing across these three data sets are shown in
Figure 13. The differences in frequencies of stage, x*(8) = 240.58, p <
.0001, and attribute, x*(8) = 54.07, p < .0001, are statistically reliable. As
Figure 13 shows, in almost every case the target frequencies for architec-
tural design with traditional methods lie between nonarchitectural tradi-
tional and OO architectural. In general, these results suggest that some of
the earlier differences we saw are due to the task but that the methods are
also generating some differences.

In sum, these results indicate that the kind of information sought by
designers using OOD methods differs substantially from that sought by



280 HERBSLEB ET AL.

designers using traditional methods. The major shifts are a dramatic
increase in why questions and a major shift toward questions about design
and away from requirements.

The increase in why questions may indicate that the designers are
reasoning more deeply about the design—seeking a more thorough under-
standing of the underlying issues. Our earlier result of finding very few why
questions can be interpreted in several ways, as we pointed out in
Herbsleb and Kuwana (1993). If we view the failure to ask about the
reasoning behind design decisions as a shortcoming in design practice,
that is as a problem to be overcome, the indications from our findings
reported here are that use of OOD methods may be a substantial step in a
desirable direction.

The shift away from asking about requirements and toward asking
about design makes sense for architecture development. Because the goal
is to support a range of imprecisely specified future applications, detailed
questions about the requirements of any particular application are likely to
be unanswerable. So, rather than focusing on what some application is
supposed to do, the focus is on why the architecture should be designed a
given way. Questions about functionality are still asked but in a more
general form-—as justifications for design decisions.

3.5. Organizational Matters
Role of Chief Architect

Many OOD methods suggest that a person or persons be specifically
assigned the role of structuring the system and maintaining its integrity
throughout development (e.g., Booch, 1991; Jacobson et al., 1992) In the
field project we observed, this role was filled by a single chief architect.
The centrality of this role is clear from the pattern of participation in
development meetings we observed. There is a very consistent and robust
finding in the small-group interaction literature about typical participation
patterns (e.g., McGrath, 1984). As a rough generalization, the most fre-
quent initiator of conversations will initiate 40% to 45% of all communica-
tions, the next initiator around 23%, next 17%, and so on (McGrath, 1984,
p. 146). We performed a similar analysis in order to compare the patterns
of participation in traditional and OOD development meetings.

For each of the 6 U S WEST OOD meetings we analyzed in detail and
for each of the 10 meetings in which traditional methods were used, we
added up the amount of time spent talking by each participant. We then
plotted these times as percentages of total speaking time and ranked
participants as the most talkative member, the next most talkative mem-
ber, and so on. Figure 14 shows the comparison of the mean ranked
percentage of speaking times in the OOD and the traditional meetings.
Obviously, the distribution is much more uneven in the OOD meetings.



OOD AND SOFTWARE DESIGN TEAMS 281

Figure 14. Mean ranked percentage of speaking times in OOD and tradi-
tional meetings.

Percentage of Speaking Time
60% T
50% 1
l 00D
40% 1
O Traditional

30% 1

20% 1

10% 1

1 2 3 4 5 6
Participants (Ranked by Speaking Time)

For 5 of the 6 OOD meetings, the chief architect was present; in each case,
it was he who was most talkative.

In order to investigate this participation pattern further, we looked at
how the most talkative person’s speaking time was spent in the OOD
meetings. So, we constructed a time-use chart like the ones presented
earlier but consisting of only the eight most time-consuming activities. For
the circle representing each of these activities, we shaded in the portion
that represented the chief architect’s contribution (see Figure 15). As the
figure makes clear, the real dominance of the chief architect was in
summary and walk-through and was not so apparent in what we had
generally considered the core design activities of issue, alternative, and
criteria.

There were some changes in the activity patterns suggesting that the
group design work is accomplished somewhat differently by OOD teams.
In particular, the chief architect developed much of the design off-line and
summarized it for the rest of the team. As a result, the chief architect
tended to take up a very large proportion of time at design meetings. But,
the results do not suggest that the other team members had no input or felt
too intimidated to offer ideas. They were very active in raising issues and
suggesting alternatives. So, the image of the chief architect as dominating
the process seems less accurate than the view of chief architect as one who
brings previous experience and off-line problem solving to the meetings.



282 HERBSLEB ET AL.

Figure 15. Comparison of time spent in activities by chief architect and all
others.

» §0D

Alternative Criteria

- Meeting
Project Management
Management
Summary

Chief

Architect

[ Others [+
Goal Walkthrough

More data relevant to the chief architect role are found in the concerns
raised by developers in the weekly interviews. Most of the concerns, we
suspect, are common to many development efforts, independent of
method. The chief architect, however, is one of the two most frequently
mentioned concerns (the other was resources). The real problem was that
the chief architect was perceived to be a significant bottleneck in getting
work done. He met frequently with other members of the team to get them



OOD AND SOFTWARE DESIGN TEAMS 283

up to speed on the current state of the design and to discuss the architec-
ture-level design decisions that guided their efforts. The chief architect also
engaged in periodic “code sweeps” in which he would review the work
done by himself and others and clean it up so it would be more elegant and
efficient. Other members complained that these changes often caused
their code to “break.” Another problem seen as significant was “repeat
coding,” or recoding after a code sweep—the fifth most frequently men-
tioned concern.

These analyses of the role of chief architect help shed some light on
other differences we observed between OOD and traditional meetings. In
particular, the chief architect appears to be the person responsible for the
large amount of meeting time spent in summaries and walk-throughs in
our sample of OOD meetings. The nature of the role, the experience of
the person who occupied it, and the challenge of maintaining architectural
integrity may all have contributed to this pattern of interaction.

Interactions With Clients

The interactions of the design team with internal clients were compli-
cated because of the sometimes conflicting expectations of different play-
ers. And, in fact, as is so often the case (e.g., Curtis et al., 1988; Walz et al.,
1993), there was not a single “client” with a single voice and consistent set
of expectations. There were constituencies that were primarily interested
in a small research demo and others who wanted a particular application
to go to market. The architectural group itself wanted to create a real
product to be used in marketable applications. But, even factoring out
these conflicting goals and expectations, it is possible to discern a few
things about the quality of communication in the project we observed and
the role of OOD representations in that communication.

In contrast to the picture of generally effective support for communi-
cation at the team level, our informal observations indicate that com-
munication by the team with those outside the architecture project was
much less effective. The essential problem seemed to be the “cognitive
distance” (Krueger, 1992) between the very abstract classes provided in
the architecture (e.g., “viewspaces” and “dataspaces”) and clients’ more
concrete needs cast in terms of specific applications. Clients seemed to
be unclear as to whether the architecture was going to provide what
they needed.

As an example of this difficulty, the design team at one point resorted
to metaphors to attempt to communicate what the architecture would
provide. Data transported over the network were likened to a train, and a
contrast was drawn between providing “flatcars” and providing “hitches.”
If one provided flatcars, application designers would need to place only
cargo (data) on them, and the flatcars would deliver the data. On the other
hand, providing hitches would serve only the function of stringing to-



284 HERBSLEB ET AL.

gether “railroad cars” of the clients’ own construction. One member of the
team expressed the opinion that the clients were expecting flatcars but the
team was designing hitches.

This suggests a tension between two purported benefits of OOD in
support of distributed cognition. As mentioned earlier, in order to
enable effective use of inheritance and reuse, one must design classes
that are highly abstract. Insofar as possible, one wants to push attributes
and behavior up the inheritance hierarchy so that they can be inherited
rather than redesigned and recoded for each slightly different object in
an application or across similar applications. On the other hand, the
more abstract the classes become, the farther they are from the under-
standing of users and domain experts—which presumably is grounded
in basic-level categories. This tension between generality and under-
standability has been noted before. Potts (1993), for example, put the
matter quite bluntly, “Our experience is that one must choose between
ease of change and ease of understanding, and that one can’t have both”
(p. 226).

This fairly negative view of OOD and client interaction contrasts
sharply with what we heard from interviewees in seven of our nine field
interviews. These interviewees reported that the flow of information be-
tween developers and users was enhanced by OOD methods. In the two
interviews in which this enhancement was not reported, communication
with clients was viewed as very good, but OOD was not seen as having
much effect one way or the other. Those reporting the enhancement
identified several ways in which it took place. By explicitly focusing on
design as refinement of a domain model, developers were more motivated
to acquire the vocabulary and concepts of the application domain—and the
OOD primitives of objects, message passing, and so on seemed easy for
users to grasp so that they could understand and contribute to design
discussions.

Our interviewees also reported that the highly iterative nature of OOD
contributed to effective client communication. In eight of the nine inter-
views, developers stressed that the iterative nature of the OOD develop-
ment process was a valuable means of refining the problem domain. To
paraphrase one manager, embedded within each of the major steps of
analysis, design, and coding were smaller steps of analysis, design, and
coding taking place iteratively. This allowed the developers to work with
users to continually refine what they knew, and the involvement of users
in each new iteration enabled them to see what they were getting and to
identify what they really wanted.

This contrast between the troubled developer~client communication
in the observed project and the generally favorable reports from our
field interviews has led us to think about ways in which these projects
differ. Although they obviously differ in many ways, one difference that
seems particularly crucial is that, for the projects in which our field



OOD AND SOFTWARE DESIGN TEAMS 285

interviewees had gained their experience, the application domain was
generally well understood (e.g., billing systems, financial systems). This
understanding was reflected in the existence of appropriate abstractions
that had already been tested in use. On the other hand, the observed
project was designing an architecture for a domain (a wide range of
multimedia applications) for which a well-understood and tested set of
abstractions did not yet exist. When such abstractions do not exist at
the outset, there is, obviously, no vocabulary and set of concepts to be
adopted by the developers that will automatically form a common
ground for communication with users.

4. IMPLICATIONS
4.1. Tools

Our focus has been on the team aspects of development, so, in order
to maintain this focus, we neglect many other important but essentially
individual concerns that influence OOD tool design. The time-sheet
analysis provides a first approximation of where in the OOD develop-
ment process the ability to interact with shared representations is likely
to be most important. The most relevant findings, of course, are that
group work was most prevalent during upstream activities (i.e., require-
ments and design) as opposed to the more downstream activities of
coding and testing. Design, in particular, seemed to require a very high
ratio of group work to individual work. Group work was also more
prevalent in the earlier periods for each type of activity. The trend was
more pronounced in requirements and testing but is also visible in
design and coding.

In addition, one of the major concerns encountered in this project was
the difficulty developers had learning about the software design and
maintaining consistency with changes the chief architect made in the code.
These tasks were major components of the problems experienced in this
project—problems often perceived as centering on the role of chief
architect.

These findings have some fairly straightforward implications for OOD
software development tools. Most such tools are designed for individual
use. Yet, as research on distributed cognition shows (e.g., Hutchins, 1990),
open interactions and open tools are often crucial to successfully accomp-
lishing essential coordination functions. Tools often serve as a medium of
communication as well as a means of learning about the domain and the
task. This need was clearly perceived by one of the more experienced
developers on the project we observed. He noted that one of the most
important functions of the class hierarchy should be as a communication
medium—a collaboratively developed knowledge base that represents a
consensus on the bedrock concepts and vocabulary. The lack of tools to



286 HERBSLEB ET AL.

support annotating, keeping abreast of changes, bringing novices up to
speed—and collaborative use in general—is a serious drawback.

Facilitating the sharing of information about the design, in particular, is
an extremely important function that should be supported by tools. We
have found in laboratory studies of design (J. S. Olson et al., 1993) that a
simple shared text editor used to support synchronous collaboration signif-
icantly improves the quality of the design outcome. The results reported
here suggest that design is a highly collaborative activity, and yet there
were no tools at all, beyond the traditional paper and whiteboard, avail-
able to the project team to facilitate collaboration by recording the design,
changes to the design, decisions that had been made, rationales for deci-
sions, open issues, and so on. The current state of research suggests there
are very significant opportunities here for improving the design process
with well-conceived tools.

Our findings are consonant with research on the major causes of soft-
ware errors. For example, the two most frequent causes of errors in a
sample of industrial applications were errors in module interfaces and
misunderstanding of module functions (Nakajo & Kume, 1991). This
points out the very high cost of failing to reach a consensus on design
decisions and of failing to record them in a form that can be effectively
shared.

4.2. Grain Size of Design Units

The difficulty of maintaining the consistency and integrity of the design
may also suggest that encapsulated units larger than objects and classes are
needed in order to coordinate development effectively. Individual classes
and objects in large systems represent a fairly fine grain view. Larger
entities, such as frameworks (Johnson & Russo, 1991), patterns (Coad,
1992), and subsystems (Wirfs-Brock et al., 1990), which could provide
another, courser grain level of encapsulation, represent another possible
approach to this problem. Rather than having a single person (e.g., a chief
architect) manage the definitions and interfaces of a large collection of
fine-grain objects and classes, system integrity issues could be addressed at
the macro level.

4.3. Interactions With Clients

We had expected to observe how the development team members
acquired specific knowledge about their application domain and how this
knowledge was disseminated among them, but the conceptual gap be-
tween the specific needs of an application and the abstract resources to be
provided by the architecture remained throughout the project. There was
not much evidence that specific, detailed application domain knowledge
was disseminated to any great extent among the design team members.



OOD AND SOFTWARE DESIGN TEAMS 287

About 4 months into the project, the design team produced a require-
ments document, part of which was prepared by the main client. The
team examined the client’s part but primarily to make sure that the
technology being designed was sufficiently general to support what the
client wanted. The team gave little attention to how the architecture
would support these specific needs. The same client generated an OO
analysis model, but the team viewed it as not very helpful. In fact, the
chief architect gave it only a very cursory examination, and those who
looked at it more closely agreed that it offered little useful guidance for
their purposes.

One of the observations that struck us most forcefully about this project
was just how different the knowledge acquisition task facing developers
was both from the traditional-methods projects we had observed and
from the sort of OO domain modeling one sees in textbooks. Very little
attention was paid to how any particular application would behave, and
much effort was spent solving general problems that would have to be
addressed for almost any distributed multimedia application. This, of
course, is at least partly the result of the project priorities, as discussed
earlier.

But, in addition, the struggle to understand the domain in this project
was a radically different task from working in an established domain. The
difference is that the requisite domain knowledge did not yet exist. Cap-
turing existing knowledge can itself be a very difficult task, of course. But,
in many well-understood domains, useful abstractions exist and have been
developed and tested over a substantial period of time. For example, the
field of accounting has evolved a set of abstractions that underlie financial
software. They have been tested in use many times in a wide variety of
applications and are by now well understood and known to be very
general.

But where the goal, as here, is to span several domains, a set of tested
abstractions known to have correct properties does not exist. So, the
design is not primarily an exercise in capturing domain knowledge but
rather the extraordinarily difficult task of discovering the deep conceptual
structure of this new, broadly defined domain. This task is in many ways
more akin to scientific discovery than to requirements analysis.

We think that this distinction between capturing and inventing do-
main knowledge has important implications for OOD development.
One might wish to think of potential projects as arrayed along a contin-
uum from pure knowledge capture to pure knowledge invention. The
place occupied by a potential project on this continuum is no doubt
determined by a complex set of factors, including the current state of
knowledge in the project’s application domain, practical concerns such
as the availability and communication bandwidth with domain experts,
and the extent to which project goals include creation of reusable
designs and code.



288 HERBSLEB ET AL.

We speculate that adopting an OOD approach will pay off with rela-
tively little risk for projects toward the knowledge capture end of the
continuum. Indeed, this is suggested by the favorable reports of OOD
experience in our field interviews. This speculation is also based on the
idea that the arguments favoring OOD and its support for distributed
cognition are strongest when the task is essentially knowledge capture. By
definition, domain knowledge exists in these projects and is disseminated
throughout the design team, and a vocabulary and a set of concepts
capable of supporting distributed cognition are also present. Toward the
knowledge invention end of the scale, on the other hand, the risks will be
high regardless of which method is used. Whether the arguments ad-
vanced in favor of OOD approaches have any basis at all in projects of this
sort is unclear.

4.4. How to Organize for OO

There were significant problems with team coordination, and they
centered on the role of chief architect. In the designers’ view, as expressed
in the weekly interviews, the chief architect was a major bottleneck, and
this was a very significant issue. This points out the importance of explor-
ing new models of cooperation and different types of class ownership as
ways of coordinating in the face of evolving class hierarchies in OOD
development (Nascimento & Dollimore, 1993). In particular, the role of
chief architect—its boundaries and responsibilities—needs to be examined
carefully. In this project, the chief architect was, in effect, a tutor on OOD
technology for less experienced team members, a tutor on the previous
version of the software on which part of the current design was based, the
person with the authority to decide about the functions and interfaces for
all classes, and an implementer who wrote a considerable portion of the
code and modified much of the rest of it. This set of responsibilities is
likely too much for one person, and ways must be found to allocate some
portion of them to other team members.

5. CONCLUSIONS

In the OOD project we observed, design is the phase of software
development in which the members of the development team met most
often as a group. This reflects the need to bring multiple minds together to
work synchronously on the hard problems of doing design. Supporting
communication, coordination, and knowledge dissemination is a particu-
larly important property of methods and tools aimed at the design phase.

Adopting OO methods for design appears to have significant effects on
how teams work. Communication among members of the team is evi-
dently quite effective, in that many fewer episodes of clarification occur
than is the case among members of comparable teams using traditional



OOD AND SOFTWARE DESIGN TEAMS 289

methods. Design discussions with OOD are also differently organized.
Summaries and walk-throughs occur much more often and are more
integrated into design activities.

The design team using OOD methods focused more attention on the
whys of design. The analysis of comparable data on traditional design
suggests that the shift in focus was at least partly due to the task (i.e.,
building an architecture as opposed to an application) but is probably also
due to the adoption of OOD methods. To the extent that knowledge
dissemination is driven by asking and answering questions, OOD seems
to encourage a deeper inquiry into the reasoning underlying design deci-
sions but less inquiry into the requirements.

The adoption of OOD methods was accompanied in our study by
considerable uncertainty about how to organize the team. The use of a
chief architect, a role advocated by several methods, seems fraught with
risks that are likely to go up as project size increases. All of our field
interviewees were much concerned about how to organize their teams,
and none expressed great confidence in any particular management
scheme. It is going to take careful analysis of the interplay of cognitive
and organizational factors across a range of studies to determine how
best to organize OOD teams. Especially interesting is how new tools to
support information sharing in design might interact with organiza-
tional matters.

NOTES

Acknowledgments. We thank Lori Meiskey and Tim Miller for their help in
gathering data for this work. We also thank all the development team members,
who dutifully participated in interviews, reported how they spent their time, and
cheerfully tolerated the constant videotaping and audiotaping. Last, we thank
Michael Cohen, Charles Hymes, Robin Lampert, Max Rahder, and Lynn Streeter
for their many insightful comments on drafts of this article.

Support. This work was supported by a grant from U S WEST Technologies, by
National Science Foundation Grant IRI-8902930, and by the Center for Strategic
Technology Research (CSTaR) at Andersen Consulting.

Authors’ Present Addresses. James D. Herbsleb, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA 15213. E-mail: jherbsle@sei.
cmu . edu; Helen Klein, Gary M. Olson, and Judith S. Olson, Collaboratory for
Research on Electronic Work, University of Michigan, 701 Tappan Street, Ann
Arbor, MI 48109-1234. E-mail: helen.klein@ um.cc.umich.edu,
gmo@crew.umich.edu, and jsolson@crew.umich.edu; Hans Brunner, U S
WEST Technologies, 4001 Discovery Boulevard, Boulder, CO 80303. E-mail:
hansi@advtech.uswest.com; Joe Harding, Harding Consulting, P.O. Box
4615, Boulder, CO 80306.

HCI Editorial Record. First manuscript received March 15, 1993. Revision
received December 29, 1993. Accepted by Robert Rist. Final manuscript received
October 19, 1994. — Editor



290 HERBSLEB ET AL.

REFERENCES

Anderson, J. R. {1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Booch, G. (1991). Object oriented design with applications. Redwood City, CA: Benja-
min/Cummings.

Brooks, F. P. (1975). The mythical man-month: Essays on software engineering. Reading,
MA: Addison-Wesley.

Brooks, F. P. (1987). No silver bullet. IEEE Computer, 20, 10~19.

Bruegge, B., Blythe, J., Jackson, J., & Shufelt, J. (1992). Object-oriented system
modeling with OMT. Proceedings of OOPSLA °92, 359-376. Vancouver: ACM.
Champeaux, D. D., Anderson, A., & Feldhousen, E. (1992). Case study of object-
oriented software development. Proceedings of O0OPSLA °92, 377-391. Vancouver:

ACM.

Chi, M. T. H,, Feltovich, P. J., & Glaser, R. (1981). Categorization and representa-
tion of physics problems by experts and novices. Cognitive Science, 5, 121-152.
Coad, P. (1992). Object-oriented patterns. Communications of the ACM, 35, 152~159.
Coad, P, & Yourdon, E. (1991). Object-oriented analysis (2nd ed.). Englewood Cliffs,

N]J: Prentice-Hall.

Constantine, L. L. (1993). Work organization: Paradigms for project management
and organization. Communications of the ACM, 36, 35-43.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design
process for large systems. Communications of the ACM, 37, 1268-1287.

Curtis, B., & Walz, D. (1990). The psychology of programming in the large: Team
and organizational behavior. In J.-M. Hoc, T. R. G. Green, R. Samurgay, & D.
J. Gilmare (Eds.), Psychology of programming (pp. 253-270). London: Academic.

Fenton, N. (1993). How effective are software engineering methods? Journal of
Systems and Sofiware, 22, 141-146.

Fienberg, S. E. (1980). The analysis of cross-classified categorical data (2d ed.). Cam-
bridge, MA: MIT Press.

Galbraith, J. (1973). Designing complex organizations. Reading, MA: Addison-Wesley.

Gentner, D. (1981). Some interesting differences between verbs and nouns. Cogni-
tion and Brain Theory, 4, 161-178.

Gentner, D., & France, I. M. (1988). The verb mutability effect: Studies of the
combinatorial semantics of nouns and verbs. In S. 1. Small, G. W. Cottrell, & M.
K. Tanenhaus (Eds.), Lexical ambiguity resolution: Perspectives from psycholinguistics,
neuropsychology and artificial intelligence (pp. 343-382). San Mateo, CA: Morgan
Kaufman.

Gottman, J. M., & Roy, A. K. (1990). Sequential analysis: A guide for behavioral
researchers. New York: Cambridge University Press.

Henderson-Sellers, B., & Edwards, J. M. (1990). The object-oriented systems life
cycle. Communications of the ACM, 33, 142-159.

Herbsleb, . D., & Kuwana, E. (1993). Preserving knowledge in software engineer-
ing: What designers need to know. Proceedings of INTERCHI °93, 7-14. New York:
ACM.



OOD AND SOFTWARE DESIGN TEAMS 291

Hutchins, E. (1990). The technology of team navigation. In J. Galegher, R. E.
Kraut, & C. Egido (Eds.), Intellectual teamwork (pp. 191-220). Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc.

Hutchins, E. (in press). How a cockpit remembers its speed. Cognitive Science.
Jacobson, L., Christerson, M., Johnsson, P., & Overgaard, G. (1992). Object-oriented
software engineering: A use case driven approach. Reading, MA: Addison-Wesley.
Jeffries, R., Turner, A. A,, Polson, P. G., & Atwood, M. (1981). The processes
involved in designing software. In J. R. Anderson (Ed.), Cognitive skills and their

acquisition (pp. 255-283). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Johnson, R. E., & Russo, V. F. (1991). Reusing object-oriented designs (Technical
Report UIUCDCS 91-1696). Champaign: University of Illinois.

Karat, J., & Bennett, ]. L. (1991). Working within the design process: Supporting
effective and efficient design. In J. M. Carroll (Ed.), Designing interaction: Psychol-
ogy at the human-computer interface (pp. 269-285). New York: Cambridge Univer-
sity Press.

Krasner, H., Curtis, B., & Iscoe, N. (1987). Communication breakdowns and
boundary spanning activities on large programming projects. In G. M. Olson, S.
Sheppard, & E. Soloway (Eds.), Empirical studies of programmers: Second workshop
{pp- 47-64). Norwood, NJ: Ablex.

Kraut, R. E., & Streeter, L. A. (in press). Coordination in large scale software
development. Communications of the ACM.

Krueger, C. W. (1992). Software reuse. ACM Computing Surveys, 24, 131-183.

Kuwana, E., & Herbsleb, J. D. (1993). Representing knowledge in requirements
engineering: An empirical study of what software engineers need to know.
Proceedings of the IEEE International Symposium on Reguirements Engineering, 273
276. San Diego: IEEE Computer Society Press.

Lubars, M., Potts, C., & Richter, C. (1993). A review of the state of the practice in
requirements modeling. Proceedings of the IEEE International Symposium on Re-
quirements Engineering, 2—-14. San Diego: IEEE Computer Society Press.

Malhotra, A., Thomas, J. C, Carroll, J. M., & Miler, L. A. (1980). Cognitive
processes in design. International Journal of Man-Machine Studies, 12, 119-140.

Martin, J., & Odell, . J. (1992). Object-oriented analysis and design. Englewood Cliffs,
NJ: Prentice-Hall.

McGrath J. E. (1984). Groups: Interaction and performance. Englewood Cliffs, NJ:
Prentice-Hall.

McKeithen, K. B., Reitman, J. S., Rueter, H. H,, & Hirtle, S. C. (1981). Knowledge
organization and skill differences in computer programmers. Cogritive Psychology,
13,307-325.

Meyer, B. (1992). The new culture of software development: Reflections on the
practice of object-oriented design. In D. Mandrioli & B. Meyer (Eds.), Advances
in object-oriented software engineering (pp. 51-64) Englewood Cliffs, NJ: Prentice-
Hall.

Miller, G. A. (1991). The science of words. New York: Scientific American Library.

Nakajo, T., & Kume, H. (1991). A case history analysis of software error cause—ef-
fect relationships. JEEE Transactions on Software Engineering, 17, 830~837.

Nascimento, C., & Dollimore, J. {1993). A model for co-operative object-oriented
programming. Software Engineering Journal, 8, 41-48.

Nierstrasz, O., Gibbs, S., & Tsichritzis, D. (1992). Component-oriented software
development. Communications of the ACM, 35, 160-165.



292 HERBSLEB ET AL

Olson, G. M., Herbsleb, ]. D., & Rueter, H. H. (1994). Characterizing the sequen-
tial structure of interactive behaviors through statistical and grammatical tech-
niques. Human-Computer Interaction, 9, 427-472.

Olson, G. M., Olson, ]J. S., Carter, M. R., & Storresten, M. (1992). Small group
design meetings: An analysis of collaboration. Human-Computer Interaction, 7,
347-374.

Olson, G. M., Olson, J. S., Storresten, M., Carter, M., Herbsleb, J., & Rueter, H.
(in press). The structure of activity during design meetings. In T. P. Moran & J.
M. Carroll (Eds.), Design rationale. Hillsdale, NJ: Lawrence Erlbaum Associates,
Inc.

Olson, J. 8., Olson, G. M., Storresten, M., & Carter, M. (1993). Groupwork close
up: A comparison of the group design process with and without a simple group
editor. ACM Transactions on Inﬁ)rmation Systems, 71, 321-348.

Potts, C. (1993). Panel: “I never knew my requirements were object-oriented until
I talked to my analyst.” Proceedings of the IEEE International Symposium on Require-
ments Engineering, 226. San Diego: IEEE Computer Society Press.

Rosch, E. (1978). Principles of categorization. In E. Rosch & B. Lloyd (Eds.),
Cognition and categorization (pp. 28-49). Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates, Inc.

Rosch, E., Mervis, C. B., Gray, W., Johnson, D., & Boyes-Braem, P. (1975). Basic
objects in natural categories. Cognitive Psychology, 8, 133-156.

Rosson, M. B., & Alpert, S. R. (1990). The cognitive consequences of object-ori-
ented design. Human-Computer Interaction, 5, 345-379.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991).
Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice-Hall.

Walz, D. B, Elam, J. J., & Curtis, B. (1993). Inside a software design team:
Knowledge acquisition, sharing, and integration. Communications of the ACM, 36,
62-77.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-oriented sofi-
ware. Englewood Cliffs, NJ: Prentice-Hall.





