
Expertise Browser:

A Quantitative Approach to Identifying Expertise

Audris Mockus
Avaya Labs Research

233 Mt Airy Rd
Basking Ridge, N J, USA 07920

+1 908 696-5608
audris@avaya.com

James D. Herbsleb
Bell Laboratories

2701 Lucent Lane
Lisle, IL, USA 60532

+1 630 713-1689
jherbsleb@lucent.com

ABSTRACT

Finding relevant expertise is a critical need in collaborative
software engineering, particularly in geographically distributed
developments. We introduce a tool that uses data from change
management systems to locate people with desired expertise. It
uses a quantification of experience, and presents evidence to
validate this quantification as a measure of expertise. The tool
enables developers, for example, easily to distinguish someone
who has worked only briefly in a particular area of the code
from someone who has more extensive experience, and to locate
people with broad expertise throughout large parts of the
product, such as module or even subsystems. In addition, it
allows a user to discover expertise profiles for individuals or
organizations. Data from a deployment of the tool in a large
software development organization shows that newer, remote
sites tend to use the tool for expertise location more frequently.
Larger, more established sites used the tool to fmd expertise
profiles for people or organizations. We conclude by
describing extensions that provide continuous awareness of
ongoing work and an interactive, quantitative resume.

1 INTRODUCTION
Bringing the right expertise to bear on design and
implementation issues is critical to the success of any
engineering project. Communication cannot be effective unless
engineers can identify the person with whom they need to
communicate. Previous research has helped to clarify the
amount of engineering effort devoted to communication. In
particular, engineers in one classic study spent around 16% of
their time in communicating with experts [2]. Interestingly,
Allen [2] reported a tendency for higher-performing engineers to
consult much more with experts outside their own discipline
than did lower-performing engineers, although both groups
spent about the same proportion of time overall communicating.
Finding experts is critical, especially those outside one's group,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the fidl citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1CSE'02, May 19-25, 2002, Orlando, Florida, USA.
Copyright 2002 ACM 1-58113-472-X/02/0005...$5.00.

whom one probably knows least well.

Research specifically with software engineers has also shown
many times that engineers spend a large proportion of their time
communicating. Herbsleb [12] indicates that early in a software
project, engineers spend about half their time communicating,
while DeMarco and Lister [5] estimate at least 70% of developer
time is spent communicating with others. A substantial amount
of this time [20] is spent in informal communication.

The task of finding needed expertise is especially difficult in
geographically distributed teams, where barriers to effective
communication exist due to geographic distance, cultural and
time differences, and lack of face-to-face contact [3,6,10,11]. In
fact, the difficulty of finding needed experts quickly has been
identified as one of the major reasons that development work
split across sites tends to take much longer than similar co-
located work [9]. Studies indicate that engineers [2] and
scientists [16] spontaneously communicate much less frequently
with colleagues whose offices are distant from theirs, so there
are many fewer opportunities to find out who has expertise in
various areas when teams are distributed.

The problem of finding experts is not limited to widely-
distributed teams, however. In fact, people whose offices are
separated by 30 meters communicate about as infrequently as
people who are located on different continents [2]. So one
might expect that projects whose members are spread across a
campus, or multiple floors of a single building, or even a long
hallway, will experience much-reduced communication among
the more widely-separated members.

One way to test the expectation that finding the right person is
an important practical problem in development, is to look at the
timing of work done on closely-related changes to the software.
Such changes, although assigned to a single person, often
require that this person recruit one or more others, with
complementary expertise, to complete the work. If finding such
people is a problem, one would expect substantial delays in
initially getting these additional people to work on the problem.
We present results relevant to this question of the importance of
finding experts.

Previous work suggests an approach to solving the expertise-
finding problem. In an empirical study of finding experts in a
software development company, Ackerman and Halverson [1]
observed that experience was the primary criterion engineers
ordinarily used to determine expertise. In fact, developers often

503

used change history to identify who had experience with a
particular file, generally assuming that the last person to change
it was most likely to be "the" expert. This strategy had several
shortcomings, including the inability to determine if the person
who carried out the change had made a large or small change,
and whether the person had made many or only a few changes in
the relevant code. Additionally, when someone with breadth
was needed, it was quite difficult to identify such people from
the change information stored in individual files.

McDonald and Ackerman [17] report on a system that uses
various heuristics to select an expert, based on who has touched
various files, who is organizationally closest to the requester,
and how well the requester knows the expert (based on a
previous analysis of the social network in the organization). The
idea is to produce a very short list of recommended experts
based on heuristics specified by the user. If no satisfactory
expert is identified, the user can "escalate," and the system will
produce a larger list of potential experts, e.g., by changing
threshold values in the heuristics.

The current project is part of a larger study of geographically
distributed software development teams. In the interview data
(reported on elsewhere, see, .e.g., [8,10]) we discovered that the
techniques currently in use for finding experts in geographically
distributed development groups are highly uncertain, time
consuming and often impose an undue burden on certain
individuals. Project architects, who were known to have a broad
knowledge of the product and people, hence were already
burdened with fielding lots of questions, had become
clearinghouses, in effect, for information about expertise. These
individuals' time is quite valuable, and spending substantial
amounts of time helping others find experts took them away
from their technical duties. Additionally, when such individuals
were not available, there was no mechanism other than
escalation through the management chain, often a slow and
burdensome process, for finding experts.

Finally, we wanted to minimize the demands on users. In
particular, we wanted to eliminate the need for people to wTite
and maintain some description of their expertise. Our
experience has been that such descriptions are generally difficult
to use because different people often describe similar expertise
differently, people have very different standards for judging the
degree of their expertise, and such descriptions go out of date
very quickly and are difficult to maintain. We also wanted to
allow users to select experts whom they know, whenever
possible, but we didn' t want to impose the burden of collecting
and maintain information about social networks and
incorporating that in the tool. As previous research has shown,
social networks in software development are highly volatile
[131.

We wanted a tool that would meet the following requirements:

• identify experts quickly and easily,

• do not overburden a few individuals,

• allow the user to find alternatives when some experts
were not available, and

• users need not create or maintain descriptions of their
expertise, nor report information about their social
networks.

Additionally, given previous findings, we decided that using
change history seemed likely to be a sound approach, but we
needed some way to quantify expertise so that

• potential experts could be compared with one another
in terms of their "degree" of relevant expertise, and

• experts with the needed distribution of expertise, i.e.,
broad, as well as narrowly specialized experts could
be identified very quickly.

Finally, we wished to explore the use of visualization techniques
to allow users to browse through the available experts, based on
their relevant characteristics, rather than pre-specifying
heuristics and having the system make the selection.

In the next section, we define quantitative measures of expertise
and describe how to obtain them from a software project's
change management systems. Then we describe methods to
identify experts for any part of the software. In a similar fashion
we also define qualities of software based on the previous
experience of people creating and maintaining it. In section 3,
we introduce Expertise Browser (ExB) - - a web-based tool to
assist developers, testers, and managers in identifying experts
for a number of software development tasks. The tool displays
the relationship between parts of software and domain experts,
using the experience measures. We briefly report on deployment
and usage of the tool in section 4. In section 5, we conclude
with extensions of this approach, including 1) a variation of ExB
designed to keep developers and managers aware of activity
related to their own work and 2) a quantitative resume that
summarizes a person's development experience in an interactive
visualization. We conclude in section 6.

2 MEASURES OF EXPERTISE
Expertise is difficult to measure or observe directly - the most
direct measure, perhaps, is a test such as ones proposed for
professional licensing. Moreover, there are many types of
expertise, and possible taxonomies of expertise. For pragmatic
reasons, we wanted to focus on the areas of expertise most often
needed in the course of large software projects. Based on
extensive interviews we have conducted with members of
distributed project teams, we found that people sometimes
wanted to locate an expert in a particular technology or tool,
e.g., a database person, or an ObjectTime person. We also
found a frequent need for an expert in a particular part of a
product, e.g., someone who knows the OA&M interface for a
particular network element. Our approach needed to
accommodate both of these sorts of experts.

In the remainder of this section, we define experience atoms
(EAs) and identify several types of expertise in a software
project that can be measured by EAs, by means of data extracted
from software change management systems. Finally, we argue
that EAs provide a reasonable, although not infallible, way of
measunng expertise. We discuss several empirical results, one
previously published and two derived from previously
unpublished data, which tend to validate EAs as a measure of
expertise.

504

2.1 Experience atoms
Experience atoms (EAs), are elementary units of experience.
Experience, we assume, is the direct result of a person's activity
with respect to a work product, enhancing it or fixing a problem.
The smallest meaningful unit of such changes is an EA. We
define the experience of an object as a collection of all such
elementary units pertaining to that object. According to our
definition, experience may pertain to a person, organization, or a
work product such as a piece of code. The simplest unit of
experience that could be observed in projects using change
management systems is the atomic change (delta) made to the
source code or to documentation. The person (and the person's
organization) implementing the change gained a certain amount
of experience by doing work required to change the particular
part of a file. The changed work product provided a particular
type of experience to a specific person.

Although we are mostly concerned with finding people with
relevant experience, we might also pose other questions, e.g.,
What experience has a particular person or organization had?
How do I find the work that would bring me the experience I
want? As we will point out later, many other interesting kinds
of questions might be asked and answered as well.

2.2 Software changes
The purpose of the typical work item in a software organization
is to make a change to a software entity. Work items range in
size from very large work items, such as releases, to very small
changes, such as a single modification to a file. The source code
of large software products is typically organized into subsystems
according to major functionality (database, user interface, etc.).
Each subsystem contains a number of source code files and
documentation.

The versions of the source code and documentation are
maintained using a version control system (VCS), such as
Concurrent Versioning System [4] commonly used for open
source software projects, or a commercial system, such as
ClearCase. Version control systems operate over a set of source
code files. An atomic change, or delta, to the program text
consists of the lines that were deleted and those that were added
in order to make the change. Deltas are usually computed by a
file-differencing algorithm (such as Unix d~ff), invoked by the
VCS, which compares an older version of a file with the current
version. Included with every delta is information such as the
time the change was made, the person making the change, and a
short comment describing the change.

In addition to a VCS, most projects employ a change request
management system (CMS) that keeps track of individual
requests for changes, which we call Modification Requests
(MRs). Whereas a delta is used to keep track of lines of code
that are changed, an MR is intended to be a change made for a
single purpose. In most projects, new functionality, corrections,
adaptations, and perfective maintenance are all initiated by
opening MRs. Each MR is assigned to one developer, and may
have many deltas associated with it. The MR owner will often
have to find other developers, with complementary expertise in
other parts of the product, to make additional changes to
complete the work needed for the MR. Some commonly used
problem tracking systems include ClearDDTS from Rational

and the Extended Change Management System (ECMS)[18].
Usually such systems associate a list of deltas with each MR.

2.3 Timing of changes - finding experts a
critical problem?

As we mentioned in the previous section, we believe that the
timing of changes in an MR can help to determine if in fact
expertise finding is a serious problem. When multiple people are
needed on an MR, it is up to the MR owner to find the other
people with the correct expertise. If this is relatively easy to do,
we would expect that the second and subsequent people to work
on the MRs would be found quickly, and would begin making
their contributions relatively early in the overall MR interval. If,
on the other hand, finding experts is difficult and time-
consuming, we would expect contributions from the second and
subsequent contributors to an MR to begin work late in the MR
interval.

To test this, we looked at all multi-person MRs and calculated
where in the MR interval the second person begins working.
Specifically, we examined two large projects (these data came
from the projects in which we deployed ExB -- see Section 4 for
a brief description of the projects), and counted how frequently
the second person's first delta falls in the last ten percent of the
overall MR interval. In project A, that happened 77% of the
time and in project B, that happened 76% of the time. In both
projects, the second and subsequent contributors began making
their contributions very late in the overall MR interval. These
results are what one would expect if finding experts is difficult
and time-consuming. It appears that this is an area where there
is enormous potential for improvement.

2.4 Domains, types, and measures of
experience

There are multiple domains of software experience. A particular
EA may or may not belong to a particular domain. The
experience domain may, for example, be represented by one or
more of the following properties of the delta:

• Software delivery where the delta belongs. That may be a
new release of software, a patch, a bug fix, or other
delivery.

• Functionality of the product part (file, module, subsystem)
touched by the delta. Different parts may define different
functional areas, e.g., GUI, database, etc.

• Technology used to do the work. It may involve
programming language, development process, editors and
other development tools and techniques.

• Purpose or type of change. Corrective changes fix
problems, adaptive changes add new functionality, and
perfective changes improve the structure and other
properties of a software code.

Experience in any of these domains can be approximated by
counting the number of relevant EAs, i.e., the deltas, or atomic
changes in a particular delivery; in a file, module, or area of
functionality; made using a particular language or tool; or
changes with a specific purpose, such as fixing problems. One
can also identify current experience, by restricting domain
experience to a specified (recent) period of time. One can also

505

use the change management system to identify testing
experience, e.g., to find a tester with experience in a particular
domain, as one who has raised a substantial ~mmber of problem-
reports on the relevant code.

2.5 Relationship between experience and
expertise

Expertise is defined as the skill of an expert, and, if interpreted
quantitatively, reflects the degree of the ability of a person to
perform certain tasks. We would argue that being able to
perform a task quickly, with minimal effort, and producing a
high quality result are the key qualities of a software expert.
We discuss one published study and two small, previously
unpublished studies, that all tend to show that experience, as
measured by EAs, tends to have the relationship one would
expect with quality, productivity, and the judgments of other
developers about who the experts are in particular domains.

A previous study [19] examined the relationship between EAs
and the probability that a software delivery would cause a failure
after deployment. One would expect that if EAs are a
reasonable measure of expertise, that deliveries constructed by
developers with a larger quantity of relevant EAs should have a
lower probability of causing a failure than a delivery constructed
by a staff with a smaller quantity of EAs. The results showed
this was in fact the case.

One would also expect that when developers start working on a
new project, there should be evidence that their expertise
increases as they accumulate EAs. This increased expertise
should be measurable, for example, as greater productivity over
time. An empirical estimate of such a curve is presented in
Figure 1. The productivity over 50 developers who started
working on the project within a three year period from 1995 to
1998 is measured by the average number of deltas completed by
a developer in a month. The time is shifted for each developer to
show their first delta occurring in month one. This allows us to
calculate productivity based on the duration of developer
experience with the new code.

The horizontal axis shows the length of a developer's experience
on the project in months and the vertical axis shows the average
number of deltas per month. The jagged curve represents
monthly averages, while the smooth curve illustrates the trend
by smoothing the monthly data. The figure shows that the time
to reach fi~ll productivity (the learning curve flattens) is
approximately 15 months. The data show the pattern one would
expect if the accumulation of EAs does in fact provide a
measure of expertise.

Finally, we did a qualitative study in order to see if experts
identified on the basis of accumulated EAs are also identified as
experts by their peers. In two development groups of about 50
developers, where we were conducting a joint project unrelated
to Expertise Browser, we identified the three developers with the
most deltas in the area of the code their group worked in. We
were interested in finding candidates for interviews to help us
understand software development process in both groups. We
then showed this list to two developers and two managers from
each of the groups during individual conversations. We asked
whether they thought that these three developers would be the
best (i.e., the most expert) candidates for our interviews. In all
cases we got complete agreement.

While these three studies do not provide definitive evidence that
EAs are a valid measure of expertise, they do provide a
substantial degree of support for this measure. In particular, we
regard the support as adequate justification for using EAs as a
basis for a tool that uses a quantification of expertise to
overcome many of the limitations of other expert location
techniques. We describe such a tool in the next section.

..E
EE
O

II)
" o

g

tO

0 ~[[~i~i~i~i~2i2ii~2i~i1S.2ZSSSSL'2222[!.2~SL~L~L~S]]2S..i2!SSSSSSLLL22L2S2~i[~[~i~i~i~T~2~J

5 10 15 20

months of experience

Figure 1: Learning curve.

3 EXPERTISE BROWSER
In this section we discuss ways to disseminate and present the
expertise information obtained using the methods described in
the previous section. The expertise information must be readily
and easily accessible by developers, testers, and managers to
help them rapidly locate the best experts for every task.
Consequently the access and presentation methods are crucial in
practice. To simplify deployment of expertise information we
chose the Web as delivery mechanism. We designed the
presentations in the form of HTML pages and embedded Java
Applets, enhanced with a more traditional forms-based interface
with search engine and hierarchical navigation. For more details
see the LiveDocs framework in [14].

To visualize expertise information we created Expertise Browser
(ExB) implemented as a Java Applet. The main idea behind ExB
is visually to query and present relationships between product
(code, documentation, design, fimctionality) and the people or
organizations that have a desired type of experience with respect
to these artifacts. There are two basic questions the ExB is
designed to answer:

1. Who has appropriate expertise for a particular product unit,
i.e., a part of the code, documentation, ftmctionality, or
delivery?

2. What is the expertise profile of a particular organization unit,
i.e., a person, a group of people, or an organization?

To answer the first question ExB provides display of, navigation
among, and selection of an arbitrary product unit. Once the user
has selected the desired product unit, all the EAs for that unit are
summed for each organization unit involved. The participating
organization units are displayed to the user with an indication of
their relative expertise.

506

To answer the second question ExB provides display of,
navigation among, and selection of an arbitrary organization
unit. Once the user has selected the desired organization unit all
the EAs for the selected organization unit are summed over each
product unit the organization has worked on. Each product unit
then displays the contribution of that organization unit relative
to the total count of EAs related to the product unit.

To implement these basic ideas we need to divide the product
and the organization into units and to provide display and
navigation among these units. The product can be divided into
hierarchical units in several ways, including the two we used as
actual bases for deployed versions of the tool:

• a directory-induced product hierarchy, based on the
source code directory structure, and

• a delivery-item induced product hierarchy, such as a
release, update, or patch.

There are several possible ways to obtain the organizational
division. We chose to use the existing department structure that
could be obtained from organization charts, since that is the type
of information most desired by users.

3.1 The views and relationships among views
To answer the basic expertise questions the ExB displays
aggregations of EAs into product and organization units and
displays the relationships among them. It also provides details
on product and organization units including contact information
for individuals. This structure leads to three main types of
views:

• Product unit views show a hierarchy or a list of product
units. Several views may be created to represent different
interesting divisions of the product, as described above.

• Organization views show a hierarchy or a list of
organizations or individuals. Several views may be created
to represent different organizational hierarchies.

• Detail views show information on a user-selected product
unit, organization, or individual. In addition to information
display, the detail views implement basic search
capabilities to find and select a desired individual,
organization, or a part of the product. Detail views also
may show the time trends of the EAs of interest to the user.

Additional views may be added to represent the work units,
including releases, features, and Modification Requests (MRs),
or the different branches of the product.

Organization and product views contain a number of possibly
hierarchically organized or otherwise related elements.
Consequently, the view may be decomposed into a layout that
determines the position of a particular element within a view and
an element renderer that displays the element (product or
organization unit). Section 3.2 describes basic user interactions.
We consider effective ways to layout the elements in Section 3.3

and ways to display each element in Section 3.4. Finally, we
describe detail views in Section 3.5

3.2 User Interactions
The user poses one of the basic questions by selecting the unit or
units of interest, for example, by clicking the mouse over the
visual representation of the desired units. If the goal is to find
experts on a particular piece of code, the user selects the product
units in question. If the goal is to find the expertise profile of a
particular group of individuals, the user selects these
organization units. As a result of the selection action all EAs
pertaining to the selected units are selected. If the unit is a piece
of code, then all deltas on that piece of code are selected. If the
organization unit is selected, all EAs pertaining to that unit are
selected in the same manner (all deltas done by developers who
belong to that unit).

The result of user selection automatically propagates to all other
views (see, e.g., [21]), providing a visual answer to the user. The
units in other views will in general be only partially selected,
because only a subset of EAs pertaining to the each unit will be
selected. For example, if a user selects one source code file
(effectively selecting all deltas for that file), there might be
several developers who contributed deltas to that file, and it is
likely that some of them contributed deltas to other files as well.
Consequently, developers in the organization view will be
unselected (did not contribute to the file), partially selected
(contributed some of their deltas to the file), or fully selected (all
the deltas they made were in that file). This requires the units to
be able to represent partial selection graphically.

Figure 2 illustrates a typical, brief interaction with ExB. The
user wishes to find an expert on the "rnc_oam" subsystem,
hopefully someone who has some breadth of expertise across the
various modules. The code view on the right shows part of the
source code tree. After expanding the "mc_oam" susbsytem
node to display the individual modules, the user clicks on the
box labeled "mc oam." This user action selects all deltas on all
files in all modules in the selected subsystem. This set of
selected deltas constitutes the set of EAs associated with that
subsystem. This set of EAs is then used to populate the three
organizational views on the left. Each of these three views
displays organizational units (supervisory groups, individual
developers, and organizations) with EAs in the subsystem
chosen by the user.

One can browse an ordered list of developers who have relevant
EAs, one can look at development groups (listed by supervisor's
name) who have relevant EAs, and one can look at organizations
with relevant EAs. The vertical size of a product or
organizational unit represents the number of EAs gained by that
unit. The horizontal size of product units represents the number
of people who contributed deltas to that subsystem, module, or
file.

507

:cadre

5FI-'K-K~zD B 5C IAl
3FFR-UMTS RN(
5k'Gl~-UMT5 N.NC
51-'GB-UI'd'l'5 KINC

nknown
1

C.~.poa.e,nt s

R.NC Development

[~k~ges

~!'oN.s , 1
~st+fotmd

I•]ac_oam_ bin

[~J:tarman_~ob
~j~ ~dmin

Figure 2: Ex B user interface.

The user then selects a potential expert - rwells - the person in
the "Developers" view at the top of the list, hence the developer
with the most EAs in the selected subsystem. This user action
(clicking on rwells in the "Developers" column) selects a subset
of"mc oam" EAs, i.e., the subset associated with the developer
rwells. The product view now highlights the proportion of EAs
in each product unit that is associated with rwells. The
proportion is shown in dark gray, at the bottom of each product
unit. From this highlighting, it is clear that the selected person
has accumulated EAs from many of the modules in the
"mc oam" subsystem, and therefore appears to be a good
can~date if breadth in "mc oam" is needed. Contact
information for the selected developer is displayed in the bottom
left panel.

In addition to posing the expertise questions, a user might desire
to focus on a particular time period, a release of the code, or an
organization unit. To facilitate such tasks, all undesired EAs
may be hidden, together with all undesired product and
organization units. We have deployed a number of Experience
Browser instances with such filtered views.

3.3 The layout
The role of the layout is to help the user easily locate the units of
interest. Consequently, the layout should represent some aspect
of the product's or organization's structure. The source code
has an inherent tree-like directory structure that breaks a system

down into subsystems, modules, and files (there might be more
or fewer levels in the hierarchy for a particular software
product). We use SWlNG's JTree to implement such layout (see
Figure 2). More exotic layouts have been proposed in the
literature, see, e.g., [15]. Such layout strategies use similarity
relations among units to determine their relative positions. For
source code, however, the directory structure appears to be the
most familiar and intuitive representation.

We found the simple item list layout (as used by swing's JList)
to be sufficient to display an organizational view. Organizations
could also be represented hierarchically. The organizations in
which ExB was deployed, however, had only very limited
hierarchy. In cases where units of code larger than network
elements were involved, and larger parts of the organization are
involved, a tree or other hierarchical layout might also be
appropriate for the organizational view.

3.4 The elements
The visual representation of individual product units and
organization units has several parts:

• identification of the unit (file's name, person's name);

• the total number of EAs that are associated with the unit;

• the fraction of EAs identified by the selections in other
organization or product unit views. Several types of EAs

508

may be shown simultaneously using, e.g., different color to
represent different types of EAs as in a stacked bar chart.

The identification of the unit is shown as a textual label
identifying the file, module, person or organization. The number
of EAs pertaining to the unit is mapped to the height of the
visual element representing the unit. The textual label may have
the font size vary according to that height.

Because of the limited space on the screen, a linear mapping
between the amount of EAs and the vertical size is not effective.
Large units occupy most of the screen and smaller units have to
be pixel or sub-pixel height. To eliminate that problem we use
square root or logarithmic mapping, where the square (or
exponent) of the height represents the number of EAs.

The selected subset of EAs is shown as a highlight covering a
portion of the unit. The proportion of the unit that is covered is
the same as the proportion of EAs selected in the unit.

3.5 The detail views
The detail views perform several primary fimctions:

• provide drill-down details on product or organization units
selected in other views;

• provide textual search and select fimctions to identify
desired product or organization units. This can be done by
typing in a person's, organization's, or code unit's
identifier in the corresponding entry of the detail view.

• provide ways to contact a person by email. Future versions
will incorporate fianctionality so that with a single click
user can initiate any of the multiple modes of
communication including email, instant messages, and
telephone call.

3.6 Deployment details
The tool was deployed as a set of Web pages. Each page
contained an ExB applet surrounded by a textual explanation of
its use (see, e.g., [14]). The ExB applet was implemented using
JDK1.2 and required a Java plug-in to be viewed using Netscape
or IE browser.

The initial page of Expertise Browser showed information on
the network element software broken down according to
functionality into subsystems. It also contained a set of links to
other pages. The links list pages showing information for a set of
releases, and a page containing information on all products (not
just this particular network element) developed in the
organization. All pages but the initial one were divided into code
units representing directory structure. The names of individuals
in the expert view were color-coded to indicate their primary
geographic location.

4 USAGE OF EXPERTISE BROWSER
At the time of this writing, the Expertise Browser has been
deployed in two organizations, focused on different projects,
with different code bases. We'll refer to these as Project A and
Project B. ExB was deployed in Project A in February of 2000.
This organization initially had about 120 developers at two sites
(approximately 40 in England and 80 Germany), and grew to
about 250 developers at three sites (England, Germany, and
France). The organization is responsible for all software

development for one network element of a recently released
telecommunications product. The project originated at the
German site, where there were relatively few novice developers.
The UK site was new when the project started, and has always
been considerably smaller than the German site. Finally, the
French site had developers who had not been previously familiar
with the project, and was the smallest in terms of numbers.

We also include results from Project B, where ExB was
deployed in October 2000. The two main sites involved in
Project B were UK and Ireland, with Ireland being a much larger
site. The project was building an operations, administration, and
maintenance product for several network elements.

Because of their unfamiliarity with the project, we expected that
the developers at the French site in project A and at the UK site
in project B would need ExB the most. In both cases, this was
because of their newness and geographic distance from
established sites.

As mentioned earlier, the deployment was done as a part of a
larger project that had the goal of addressing a broad range of
issues related to globally distributed software development. In
the context of hour-long two-on-one sessions (i.e., two trainers,
one developer) where developers received training on several
collaboration tools, about 35 members of Project A (about 15 in
England, 15 in Germany, and 5 in France) received
approximately 5-10 minutes of individual training on ExB. In
Project B, about 22 people in Ireland and none in the UK
received training. Awareness of ExB spread beyond this initial
group by word of mouth, but we do not have a good measure of
the extent to which other members of the organizations were
aware of ExB.

4.1 Usage logs
We captured ExB usage in logs produced by downloaded
applets sending UDP packets back to the web server from which
the ExB applet was downloaded. It was then recorded into a log
file on the server by a script listening on the specific UDP port.
Except for occasional system or network down time, the script
ran continuously.

Each packet included the IP address of the client, the time
stamp, the type of the interaction, and additional parameters. We
recorded when the applet was initialized (page loaded first time),
started (page loaded first or subsequent time), stopped (other
page has been loaded), destroyed (browser closed or applet
removed by garbage collector).

Specific interaction events were generated by users clicking on a
particular part of the ExB applet with a mouse. There were the
following types of interactions:

• M : select a module or file to show experts associated
with it.

• P: select a person to see their contact info and their
work profile.

• O : select an organization to see its work profile.

• M F : select a module to see a list of files associated
with it.

First, we selected IP addresses of the hosts that were in locations
targeted by the ExB deployment. The four countries involved

509

were Germany, United Kingdom, France, Ireland. To do that we
had to identify the geographic location of all IP addresses in the
logs and eliminated records from other locations. We also
eliminated all hosts for which we could not determine the
location and eliminated access to all but the two projects
targeted by deployment. Of the 94 hosts in total, we obtained
useful data from 75. The remainder had IP numbers originating
at other locations, or were IP numbers whose location we could
not determine.

-9

.

I I I I I

2 0 4 0 6 0 8 0 1 0 0 1 2 0

N u m b e r o f i n t e r a c t i o n s

Figure 3. Distribution of session length.

Then we combined access records from each of the 75
remaining hosts into a single time chain for each host. Each
host chain was broken into subsequences starting with "init" and
ending with "destroy." Because UDP packets are not
guaranteed to be delivered, we also broke the chain where
intervals between two user actions exceeded 10 minutes. We felt
that a single ExB session is not likely to have breaks as long or
longer than ten minutes. This resulted in the 143 nontrivial
subsequences (we did not consider subsequences that did not
have at least a single mouse click). Only 68 hosts had a
nontrivial sequence; the most plausible interpretation is that
around 10% of the hosts were not able successfully to run the
ExB applet. The sequence length histogram in Figure 3 shows
that the length of sequences varying substantially, but about half
of the nontrivial subsequences had less than 10 user interactions,
although there were more than hundred interactions in some
subsequences.

Table 1. Number of interactions by type and site.

Project Site

A Germany

A UK

A France

Subtotal

B UK

B Ireland

Subtotal

M MF O P Total

184 2 28 113 327

164 12 32 112 320

226 21 18 141 406

574 35 78 366 1053

145 * 4 79 228

414 * 18 165 597

559 * 22 244 825

We analyzed the data further broken down by project, because
there were substantial differences between the projects. The
record of usage logs presented in Table 1 shows that there were
more interactions at the French site despite a much smaller
number of people involved over a shorter period of time (the
French site started participating 8 months later than the UK and
German sites). (The * indicates that that MF type of interaction
was not available in project B.)

We can look at the relationships between interaction types and
sites by inspecting the deviations from the assumption that the
site and the interaction type are independent (by looking at the
difference between the actual count data and independence
model). Table 2 shows the relative deviations from the
independence model for Projects A and B. The most significant
deviations involve the French site more frequently inspecting the
list of files in a module and the German site almost never doing
that. Furthermore, the French site less frequently inspected
organizational structure with the UK site being relatively most
interested in that aspect.

Table 2. Relative deviation from site/type independence
model.

Project Site M MF O P

A Germany .03 -.8 i .2 0

A UK -.06 .1 .4 0

A France .02 .6 -.4 0

B UK -.06 * -.34 .17

B Ireland -.02 * .13 -.07

In project B the two main sites involved were UK and Ireland
with Ireland being a much larger site. The tool was
demonstrated only at the Irish site. Despite the smaller size and
relative lack of exposure, there is a substantial usage of the tool
from the UK site. This usage likely reflects the fact that the UK
site was not as familiar with the project, and because of its small
size, did not have experts in all parts o f the product. UK
developers seemed primarily interested in finding out where
particular people worked in the software. The more established
Irish site (similarly to the more established German site in
Project A) looked relatively more frequently at the larger picture
presented by the organizational level, presumably to understand
where different groups were working in the product.

4.2 User feedback
In addition to the quantitative usage data, we collected
qualitative user feedback after the training sessions by asking
developers i f they found the tool useful, how they intend to use
it, and if they have any suggestions for improvement. We
discovered several things of interest in these sessions.

Everyone indicated that the interface was fairly easy to
understand and use, which we think helps to validate our design
choices, especially the use of simple list and tree structures for
visualizations. Users did, however, make several requests for
changes in the user interface (e.g., richer contact information to
make it easier to contact the expert, text input capabilities so

510

they could select people or code by name rather than using the
graphical interface.

Of potentially more interest were several suggestions we
received proposing novel uses for ExB or extensions of ExB.
We showed ExB to the manager who had had overall
responsibility for one release of the network element. After
using ExB to explore the changes for that release, he told us that
he had discovered more in the last few minutes about who
actually did what on that release than he had ever known while
he was actually managing the development. This was a use of
the tool we had not really anticipated, i.e., using it to get an
overview of project activity. This notion was reinforced by
project managers, who were particularly interested in seeing an
overview of very recent changes (over the last day or two) done
in the project to be more aware of what is going on.

Testers proposed another feature to help them use the tool in a
novel way. They desired to see a set of recent changes touching
a particular module. When they find that there is a problem with
a module (not all tests pass), they first need to make sure that
that problem has not been already reported. This involves
looking over descriptions of all recent changes and
understanding if the change was attempting to fix the problem
they are observing. That involved a significant amount of work,
and they wanted to use the tool to focus on changes that pertain
to the module containing the problem, thereby reducing the
amount of search they need to perform. This was another use
we had not anticipated.

$ DISCUSSION
The tool described in this paper solves the expertise-finding
problem in a way that meets the criteria we initially proposed.
I.e., it provides a way of identifying project-related expertise.
One can easily find people who worked on particular parts of a
project, and can see easily how their experience is distributed
over the product, i.e., highly specialized or broad, and exactly
where the contributions occurred. Appropriate filtering of
expertise atoms allows display of tool, language, or release and
other types of expertise, Second, this is accomplished by using
data that are collected automatically. It imposes no burden on
individuals to describe their expertise. It also provides
alternatives to querying project architects and other well-known
experts, increasing the chances that the user will find an expert
quickly, and reducing the overload on the "expertise experts."

Analysis of usage data strongly suggests that satellite sites that
are either new to the project or do not have the sufficient breadth
of the expertise are likely to be the most active users.
Unexpectedly, however, the larger and more established main
sites not only used it less, but used it differently. The patterns of
use at the German site in Project A and the UK site in Project B
both suggest considerable interest in exploring where particular
organizational units (i.e., development teams) worked in the
code. In the newer, smaller, less established sites, the tendency
was to begin with some part of the product and look for experts,
or to start with a person to see where he/she worked in the
product. In the older, larger, more established sites, the
tendency was to go fi'om organizations and find where they
worked in the product.

5.1 New applications based on ExB ideas
The techniques exploited for the purpose of locating experts
have other compelling applications that we have begun to
explore, some of which were suggested by user feedback. One
is an "activity awareness" tool that allows a user to browse
recent changes that may impact his/her work. Ordinarily, it is
difficult to keep abreast of ongoing work that may impact your
own, and organizations struggle to make sure that the work of
different individuals and groups does not conflict. Providing a
way of recognizing potential conflicts very quickly, and
avoiding them if possible, would be very beneficial. The
awareness version of the tool accomplishes this by choosing
related changes either on a static basis (e.g., change the same
files the user recently worked in) or a dynamic basis (e.g.,
changes in code that the user's code calls or is called by). The
user can then discover immediately where such changes
occurred, when they were made, and who made them. Contact
information and capabilities are also provided to support any
needed communication.

Another application is a "quantitative resume," an interactive
visualization of a person's experience. It includes views that
capture tools and technologies used, projects and parts of the
product worked on, and roles (e.g., developer, tester, manager)
occupied. Figure 4 illustrates one example. The top three views
show language, company, and position and the bottom view
shows rate (number of changes per year). The user of the
quantitative resume has selected the last period in the rate view.
The corresponding highlighting is shown in the remaining
views, indicating that during the selected period, the person had
experience with Java and Perl, worked for the company named
b2b, and had positions of team leader and developer.

Figure 4: Quantitative resume.

5.2 Change management systems and
collaboration

Change management systems are designed to support
collaborative work on documents and software. Consequently,
they contain massive, yet largely untapped sources of many
kinds of information about people, activity, and experience. We
believe there is enormous potential in this information for tools
to support collaborative software engineering. We look forward
to the day when change management systems become powerful
tools for effective collaboration, as well as control.

6 REFERENCES
[1] Ackerman, M. S. and C. Halverson. Considering an

Organization's Memory. in Computer Supported
Collaborative Work. 1998. Seattle, WA: ACM Press 39-48.

511

[2] Allen, T. J., Managing the Flow of Technology. 1977,
Cambridge, MA: MIT Press.

[3] Carmel, E., Global Software Teams. 1999, Upper Saddle
River, NJ: Prentice-Hall.

[4] Cedeqvist, P. et al, CVS Manual. May be fond on:
http://www.cvshome.org/CVS/.

[5] DeMarco T., and Lister, T. Peopleware: productive projects
and teams. 1987, New York: Dorset House Publishing.

[6] Gfinter, R. E., J. D. Herbsleb, and D. E. Perry. The
Geography of Coordination: Dealing with Distance in R&D
Work. in GROUP '99. 1999. Phoenix, AZ

[7] Graves, T. and Mockus, A. Identifying productivity drivers
by modeling work units using partial data. Technometrics,
43(2):168-179, May 2001.

[8] Herbsleb, J. D. and R. E. Grinter. Splitting the Organization
and Integrating the Code: Conway's Law Revisited. in 21st
International Conference on Software Engineering (ICSE
99). 1999. Los Angeles, CA: ACM Press 85-95.

[9] Herbsleb, J.D., et al. An Empirical Study of Global
Software Development: Distance and Speed. In
proceedings, International Conference on Software
Engineering (ICSE 2001) Toronto, Canada, May 15-18, pp.
81-90

[10] Herbsleb, J. D. and R. E. Gfinter. Architetures,
Coordination, and Distance: Conway's Law and Beyond.
IEEE Software, September/October 1999, pp. 63-70.

[11] Herbsleb, J.D. & Moitra, D. Global Software
Development. (2001). IEEE Software, March/April 2001,
pp. 16-20.

[12] Herbsleb, J. D., et al. Object-oriented analysis and design
in software project teams. Human-Computer Interaction
10,, 1995, 249-292.

[13] Herbsleb, J. D., et al. Distance, Dependencies, and Delay in
a Global Collaboration. in CSCW2000. 2000. Philadelphia,
PA

[14] Hibino, S. L., et al. A web based approach to interactive
visualization in context. In Advanced Visual Interfaces,
pages 181-188, Palermo, Italy, May 23-26 2000.

[15] Kohonen, T. The self organizing map. IEEE Transactions
on Computers, 78(9):1464-1480, 1990.

[16] Kraut, R. E., C. Egido, and J. Galegher, Patterns of Contact
and Communication in Scientific Research Collaboration,
in Intellectual Teamwork: Social and Technological
Foundations of Cooperative Work, J. Galegher, R.E. Kraut,
and C. Egido, Editors. 1990, Lawrence Erlbaum
Associates: Hillsdale, NJ. 149-171.

[17] McDonald, D. W. and M. S. Ackerman. Expertise
Recommender: A Flexible Recommendation System and
Architecture. in ACM Conference on Computer Supported
Cooperative Work. 2000. Philadelphia, PA: ACM Press
231-240.

[18] Midha, A.K. Software configuration management for the
21st century. Bell Labs Technical Journal, 2(1), Winter
1997.

[19] Mockus, A. and Weiss, D. M. Predicting risk of sot~ware
changes. Bell Labs Technical Journal, 5(2):169-180,
April-June 2000.

[20] Perry, D. E., N. A. Staudenmayer, and L. G. Votta. People,
Organizations, and Process Improvement. IEEE Software
11, 4, 1994, 36-45.

[21] Wills, G.W. Linked data views. Statistical and Computing
Graphics Newsletter, 10(1):20-24, Summer 1999.

512

