
Searching the State Space: A Qualitative Study of
API Protocol Usability

Joshua Sushine, James D. Herbsleb, and Jonathan Aldrich
{sunshine, jdh, aldrich}@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, PA

Abstract—Application Programming Interfaces (APIs) often
define protocols — restrictions on the order of client calls to
API methods. API protocols are common and difficult to use,
which has generated tremendous research effort in alternative
specification, implementation, and verification techniques. How-
ever, little is understood about the barriers programmers face
when using these APIs, and therefore the research effort may be
misdirected.

To understand these barriers better, we perform a two-
part qualitative study. First, we study developer forums to
identify problems that developers have with protocols. Second,
we perform a think-aloud observational study, in which we
systematically observe professional programmers struggle with
these same problems to get more detail on the nature of
their struggles and how they use available resources. In our
observations, programmer time was spent primarily on four types
of searches of the protocol state space. These observations suggest
protocol-targeted tools, languages, and verification techniques
will be most effective if they enable programmers to efficiently
perform state search.

I. INTRODUCTION

Application Programming Interfaces (APIs) often define

protocols — restrictions on the order of client calls to API

methods. These protocols are common: more than three times

as many types in the Java Standard Library define protocols

as define type parameters [2]. Protocols can also be complex:

ResultSet from the Java database connectivity (JDBC) library

contains 33 unique states dealing with different combinations

of openness, direction, random access, and insertions [3].

Protocols also cause significant pain: for instance, in a study

of problems developers experienced when using a portion of

the ASP.NET framework, three quarters of the issues identified

involved temporal constraints such as the state of the framework

in various callback functions [16]. Finally, protocols are poorly

supported by mainstream languages and tooling — the state of

practice is to specify protocols with documentation, implement

them with low-level language constructs, and react to violations

with exceptions.

All of the factors just mentioned have spurred a tremendous

number of research projects aimed at improving the usability

of API protocols. There have been many tools and languages

designed to specify and verify protocols. Strom and Yemini

[28] proposed typestate as a compiler checkable abstraction of

the states of a data structure. The Fugue system later integrated

typestates into an object-oriented programming language [8].

Many tools verify protocols (e.g. Bierhoff et al. [4], Dwyer

et al. [9], Foster et al. [11]). These tools require programmers

to specify protocols using alias and typestate annotations

separate from code. To automate the annotation, many tools

mine protocol specifications from program executions or static

analysis. A recent survey of automated API property inference

techniques uncovered 35 inference techniques for ordering

specificationss [25].

This massive research effort has gone on despite the fact that

very little is known about precisely what problems programmers

have when using APIs with protocols. In this work we attempt

to answer four research questions which we hope will provide

more solid guidance for future researchers:

RQ1 What are the characteristics of protocol tasks that are

difficult for programmers?

RQ2 How do programmers approach protocol tasks?

RQ3 What information do programmers seek and have

difficulty locating while performing protocol tasks?

RQ4 What resources do programmers use while performing

protocol tasks?

To answer these questions, we performed two studies of

professional developers. The first study identifies real-world

phenomena, and the second investigates the heart of those

phenomena in more detail.

In the first study, we searched the popular developer

forum, Stack Overflow, for questions related to known APIs

with protocols. We then winnowed, analyzed, distilled, and

merged the resulting questions into a list of distinct protocol-

specific tasks. These tasks represent real protocol programming

challenges and we noted five common characteristics in answer

to RQ1.

In the second study, we brought seasoned professional pro-

grammers into the lab and observed them performing the tasks

uncovered by the forum mining. To answer RQ2, we analyzed

the transcripts to categorize the activities that programmers

performed. Information seeking dominated programmer effort

and we therefore noted the information the developers sought

while performing the tasks and how they sought it. We found

that developer time was spent primarily on state search. We also

found that developers debugging protocol violations looked

first to the documentation related to the method call occurring

at the exception location to solve their problems. These findings

address RQ3 and RQ4.

2015 IEEE 23rd International Conference on Program Comprehension

978-1-4673-8159-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPC.2015.17

82

II. PROTOCOLS

This paper intends to investigate API protocols, but the

term protocol is widely used with conflicting or ambiguous

definitions. In this paper, we focus on object-oriented APIs

and we borrow the precise definition from Beckman et al. [2,

p. 4]:

A type defines an object protocol if the concrete state

of objects of that type can be abstracted into a finite

number of abstract states of which clients must be

aware in order to use that type correctly, and among

which object instances will dynamically transition.

The focus of this definition is on state machines. An object

with a protocol must have a finite number of states which are

abstractions over concrete internal representations. These states

are visible and relevant to API clients. An object transitions

between abstract states when particular methods are called at

runtime. Clients programs that do not comply with a protocol

will cause the API to throw an exception, operate incorrectly,

or fail to operate at all. We had this definition in mind while

conducting both of the studies discussed in this paper. Therefore,

all of the API protocols we studied conform to this state-based

definition.

III. RELATED WORK

The studies we discuss in this paper focus on the usability

of API protocols. This works builds on many recent studies of

more general programming obstacles. Two classes of studies

have particular relevance to this paper. The first class, which

we will refer to as information needs studies, includes mostly-

qualitative studies that are often conducted in the field. They

investigate what information developers look for in their work,

how they look for it, and the purpose of the information. The

second class of studies, which we will refer to as API usability
studies, are mostly quantitive and are usually conducted in the

laboratory. They investigate the usability of particular APIs,

or more recently the usability of API design choices. There is

not space to discuss all of the examples in either class. Instead

we will delve deeply into a few examples in each class (and

one gap-bridger) to highlight important lessons for this paper

and motivate the study’s design.

A. Information needs studies

In an oft-cited example of an information needs study, Ko

et al. [18] observed 17 Microsoft developers as they performed

their regular work. During the study, participants searched for

information 334 times, which the experimenters abstracted into

21 categories. The abstracted categories are all very high-level,

reflecting the breadth of the activities performed. For example,

the most common category was “did I make any mistakes in

my new code?” Two categories identified by Ko are particularly

relevant to protocols: 1) “What code causes this program state?”

— A programmer using an API protocol needs to understand

how an object transitions to a particular abstract state.1 2)

“In what situations does this failure occur?” — Debugging a

1Ko addressed this category with the Whyline tool [17].

protocol violations requires understanding when a particular

method call is invalid. Our studies expand on these results,

discovering in more detail when question like these arise and

what kinds of state information are needed.

Other studies, also information needs studies, have narrowed

the developer tasks slightly to delve more deeply into specific

topics. For example, Sillito et al. [26], like Ko, studied

professional programmers in their work environments. However,

instead of studying whatever the programmers happened to be

working on, the programmers were asked to select an “involved”

software change task, and never “a simple fix.” Silito observed

programmers pursued an answer to a higher-level question “by

asking a number of other, lower-level questions.” Sometimes the

programmers even asked the low-level question first and built up

to the higher-level question. Our studies will investigate which

low-level questions are most useful in learning to correctly use

API protocols.

LaToza et al. [20] brought programmers to the lab and asked

them to contribute architecture-level design improvements

to a 54KLOC open source tool. They noted several high-

level differences between experts and novice participants:

novices focused more on symptoms of problems, experts on

sources; novices spoke in terms of specifics, and experts in

terms of abstractions; novices wasted more time understanding

implementation details, while experts’ focus was wider. Again,

these results are interesting and contribute to our general

knowledge, but are of little direct utility to most language

and tool designers.

Robillard and DeLine [24] surveyed and interviewed Mi-

crosoft developers about the obstacles they faced when they last

learned to use a public API. The most common obstacles men-

tioned involved documentation. More particularly, the answers

suggested five problematic issues commonly found in API

documentation: design intent, code examples, matching APIs

with use cases, penetrability, and formatting/presentation. Many

of these issues were simply missing from documentation, (e.g.

no discussion of performance characteristics), mistargeted (e.g.

examples of inapplicable usage), or buried (e.g. most method

documentation contains boilerplate repetition of information

contained in the method signature).

B. API usability studies

The more traditional API usability studies observe program-

mers in the laboratory while they use APIs. In most of these

studies, the participants performed tasks that were selected by

the experimenters as “representative of typical use” of the API.

McLellan et al. [22] were among the first to publish a study

of a particular API, and they are also credited with spreading

the recognition that “the techniques and theory developed for

usability should be applied directly to the API” [6]. McLellan’s

study uncovered many low-level difficulties with the API under

investigation, but more importantly for the purpose here, agreed

with Robillard about the importance of code examples and

documentation.

McLellan’s study and those like it are primarily useful for the

designers of the API under investigation. To provide guidance to

83

designers of future APIs, Jeff Stylos and colleagues performed

a series of studies to evaluate API “design choices” [10, 29, 30].

In Ellis et al. [10], the experimenters compared the usability

of constructor-based instance creation with instance creation

using a factory method or abstract factory [12], which Ellis

refers to collectively as the “factory pattern.” The study used

both within and between subjects comparisons and found that

users required much more time to instantiate objects when the

API used the factory pattern rather than constructors.

The design choice studies provide data-driven design guid-

ance, but it is difficult to abstract principles from them. For

example, the Ellis study does not provide insight into why it

is harder to use the factory method pattern than a constructor.

C. Discussion

The two studies we report in this paper lie between the two

classes discussed above. The studies in this paper, like those in

the first class, are qualitative and focus on the information needs

of developers. Unlike the other information needs studies, we

focus on a particular programming domain — API protocols—

to add detail and richness to our existing general knowledge

so that it can be used for tool building.

Our think-aloud laboratory study shares many elements with

the studies in the second class. However, our tasks were mined

from developer forums and we therefore expect the study to

be more connected to practice. Finally, the laboratory study

was not looking for quantitative results like the design-choices

studies, nor specific issues with the APIs like the McLellan-type

studies. Instead, the results of the second study are principles

and understanding which we hope can be applied to any API

with protocols. Our follow-on work, which validates this paper’s

conclusions, evaluates state-structured documentation using

programming experiments that are similar to the McLellan-

type studies [32].

IV. FORUM MINING

We mined Stack Overflow, a widely-used developer forum,

primarily to identify the characteristics of protocol tasks that

are difficult for programmers (RQ1). We discuss the strengths

and weaknesses of StackOverflow data in Section IV-A. We

downloaded the entire Stack Overflow database which is freely

available to anyone under a Creative Commons license. When

this study was conducted there were 2.6 million questions on

Stack Overflow. This is far too many to read and digest, so

we winnowed the question list with the techniques we discuss

in Section IV-B. The goal of the filtering was to focus our

efforts on questions that were likely to be protocol-related and

significant. Once we had a reasonable-sized list of questions, we

manually read each questions to: 1) determine if the question

was protocol-related, 2) distill a task, and 3) merge with existing

tasks. This study’s aim is to characterize recurring protocol

problems, but does not attempt to estimate commonality. The

study also required a lot of manual labor, so we likely excluded

many protocol question for the sake of efficiency. The strategies

we used in all of these efforts are discussed in Section IV-C.

Fig. 1. Screen snap of the StackOverflow question page.

The most frequent and interesting characteristics of protocol-

related questions are discussed in Section IV-D.

A. Strengths and weaknesses of forum data

Forums provide a window into developer practice that is

particularly well suited to mining examples. Asking a question

on a forum requires significant effort — it requires composing

a question, extracting relevant code or documentation, and

describing important context. After asking a question, the

answers do not come immediately, so developers often wait to

post questions until they have struggled for a while. Therefore,

the questions usually contain distilled problems of practical

significance.

We chose to use Stack Overflow for its wide use, feature set,

and openness. Stack Overflow is the most popular developer

forum on the web and it therefore contains questions in a

uniquely broad set of categories. Parnin and Treude [23] found

that StackOverflow covered 84% of the methods in the JQuery

API. This was important for us because it allowed us to distill

a wide-range of protocol-related tasks. A sample question page

with important highlighted features is shown in Figure 1.

According to Mamykina et al. [21] Stack Overflow is also

the fastest forum on the web, with median answer time of

only 11 minutes. This speed encourages posting on low-level

topics, which includes most protocol issues, since questioners

can expect a fast answer. Mamykina credits the popularity

primarily to the engagement of the Stack Overflow designers

with the user community. In addition, the feature set, which

includes a “reputation score” earned for asking well-liked

questions or providing well-liked answers, incentivizes use [33].

All viewers of a question can categorize the question with a

“tag,” which helps programmers determine question relevance.

Of particular importance to this effort is that questioners are

rewarded for “accepting” an answer, which often gives the

most important clue about the real problem the questioner

84

faces. For example, the code search and recommendation tool

Example Overflow uses these social features to the determine

quality and relevance of programming examples contained in

StackOverflow questions. [36].

Despite the numerous benefits of forum questions as a data

source, and Stack Overflow in particular, the questions there

are by no means representative of all programming problems.

Vasilescu et al. [34] found that women are substantially less

likely to participate in Stack Overflow than men. Furthermore,

women that did participate were less likely to participate heavily

or earn reputation points. More generally, Kuk [19] found

that forum participants act strategically in a number of ways

including by helping those who are likely to reciprocate and by

seeking out career advancement opportunities. This strategic

behavior results in a question and answer pool that is largely

authored by a heavily active elite. Finally, the quality and

difficulty of StackOverflow questions vary dramatically [13].

Therefore, one cannot count questions of a certain type to gauge

commonality of that type. In summary, Stack Overflow is a

useful resource for finding real-world programming problems

but the participant and question population is not representative,

nor are the questions sets directly comparable.

B. Winnowing the Question List

We wanted tasks that both are protocol-related and caused

problems for real developers. Therefore, we started by assem-

bling a list of 109 Java Standard Library classes that contain

a protocol. The bulk of the classes are listed in two studies,

Beckman et al. [2] and Whaley et al. [35], that identified

protocols via semi-automated static analysis. Neither Beckman

nor Whaley identified any protocols in interfaces, so 9 interfaces

were added from other sources (e.g. Bierhoff et al. [4]). These

interfaces are not implemented in the Java Standard Library,

but they are implemented by many third parties, and so the

interface protocols can be very widely used.

We downloaded a data dump from Stack Overflow that

contained questions and answers that were created through

March 2012.2 We discarded 40 of the classes because their

protocols were very familiar and simple. In particular three

protocol patterns were removed: 1) Boundary protocols in

which a method named next or starting with next (e.g. nextInt)

cannot be called after the end of an underlying list (e.g.

java.util.Iterator). 2) Deactivation protocols in which many

methods cannot be called after the close method is called

(e.g. java.util.Scanner). 3) Redundancy prevention protocols in

which the cause of a Throwable or Exception cannot be set

more than once3

We then searched for questions about each of 69 remaining

classes systematically, to ensure that later analysis was done

2This was the latest data dump available at the time this part of the study
was conducted.

3In unpublished experiments conducted by Ciera Japan, tasks involving these
protocol patterns were very simple for expert developers, but still challenging
for novices. It seems that experts have memorized or otherwise internalized
the steps needed to use these libraries correctly. In these experiments, experts
completed tasks involving these patterns very quickly and the observations
therefore yielded little insight.

fairly. The SQL queries used are described in detail in Sunshine

[31].

For most classes the search returned fewer than five related

questions, and only nine had more than 100. In order to include

only well-used APIs in the results, we focused our efforts on

these nine classes.4 We examined all of the questions and

answers related to these nine classes, looking for protocol-

related questions. We discuss how we determine if a question

is protocol related in detail in Section IV-C. Of the nine,

five had protocol-related questions: URLConnection, its close

cousin HttpURLConnection, Timer, ResultSet, and Socket had

protocol-related questions. The results in this section are drawn

from questions related to these classes.

C. Analyzing a Question

We manually examined a total of 5,039 questions related

to nine classes. The first order of business was to eliminate

questions that were unrelated to protocols. The single fastest

heuristic we used was to examine how the search keyword was

used in the post. The keyword was often found in an import

statement, method return type, type of an unused variable

or argument, comment, throwaway reference, etc. but never

used again. This phenomenon was especially common in cases

where long code blocks were attached to a question for context.

The vast majority (more than 90%) of questions were discarded

by this heuristic alone. For example, in question #5302656,

“java.sql.ResultSet” appears exactly once in a list of possible

types of values accepted by a particular value. In question

#2609535, ResultSet only appears in an import statement and

is never used.

If the keyword heuristic did not eliminate a question, we

examined the question more thoroughly. We focused on the

accepted answers to questions, the exception types and error

messages described, and searched all text and code for protocol

violating methods. More details can be found in Sunshine [31,

ch. 3].

Excluding questions. If none of the protocol violating

methods appeared and none of the earlier strategies were useful,

then we excluded the question from the study. It is therefore

possible we incorrectly excluded questions this way, especially

if the protocol issue was not in code but buried in difficult to

parse prose. However, the large number of questions required

us to be expedient. The goal of the study was not to estimate

the commonality of protocol problems, but to characterize

recurring patterns—which justifies the expediency.

Brute force. In rare instances, none of the above strategies

worked. These instances usually included large blocks of code

with many method calls and exceptions. When none of the

earlier strategies worked, we carefully read the full text of the

post, including all the answers, to understand the problem or

problems faced by the questioner.

Distillation. If a question was found to be protocol related,

we then distilled a concrete protocol-based task from the

4We cutoff questions with fewer than 100 questions because 100 is a round
number and there was a sizable gap in the data at that point. All of the APIs
included in the final study had a minimum of 210 questions.

85

question being asked. We focused our efforts on discovering

the particular difficulty the programmer had with the protocol.

Protocols are composed of rules, and in most cases, the

programmer violated one of these rules. In these cases, the

distillation involved identifying the specific rule that was

violated. We excluded all domain specific information from

the task. For example a Timer running on Android is the same

as a Timer running on a PC.

D. Results

After completing the winnowing, analysis, and distillation

we selected 28 Stack Overflow questions. We merged these 28

question into 13 distinct topics. The results are summarized

in Table I. The most common distilled question was about

the violation of a protocol rule. There were 23 such questions

and these were merged into nine topics, one for each distinct

protocol violation (marked “Cannot” in the table).

Three questioners confused two rules that compose the proto-

col. These three questions represent two distinct confusions and

they were therefore merged into topics (marked “Confusion”

in the table). Finally, two questioners requested the APIs add a

new protocol-related feature. These were distinct and therefore

represent two topics (marked “Wanted” in the table). In both

cases, the questioners requested state-tests, which we will

discuss further in the next section. All of the questions, except

in two topics, asked for help debugging a protocol violation.

1) Characteristics: The questions and corresponding topics

had five common and interesting characteristics that we

highlight here. These characteristics address RQ1, “what are

the characteristics of protocol tasks that are difficult for

programmers?” In each case we discuss the evidence for each

characteristic in the data and then discuss its significance. After

all the characteristics are introduced, we discuss the significance

of the full collection.

Missing state transition. Many questioners hoped for or

assumed a state transition that the protocol did not allow. For

example, questioner #4278917 explicitly asks if there is a

method that allows a client to “disconnect” and thereby reuse a

URLConnection (there is none). Similarly, one way of looking

at all six questions about rescheduling a TimerTask, is as a

question about the ability to transition the TimerTask from the

scheduled to the virgin state. Finally, two of the questioners

trying to call scrolling methods on a forward-only specifically

looked for a method to transition that ResultSet to the scrolling

state. Documentation is particularly ill-suited to addressing this

type of question. It often requires a global search of all of the

method and class documentation to discover that a transition

is not available.

State tests. For three of the four libraries, questioners asked

for a method to test the abstract state of the object. The state

test questions for Timer (#13880202) and URLConnection

(#7614408) are listed in Table I. In addition, questioner

#2741276 requests a method to test if a ResultSet has been

closed. However, this question was not included in the results

because an isClosed method was added in Java 6. Presumably,

the questioner was using an earlier version of Java. There

were no similar questions about Socket, but for good reason —

Socket includes state tests for every state it defines.

State independence. In some cases, objects with protocols

can occupy multiple states simultaneously. For example, a

ResultSet object, whose UML state machine is shown in

Figure 2, occupies the and-states Direction and Position simul-

taneously. State transitions on and-states act independently, and

this independence confused several questioners. For example,

the connectedness and openness of a socket are independent.

Questioner #3701073, perhaps unsurprisingly, thought that a

closed socket could not be connected, but this is incorrect.

Similarly, the four forward-only questioners did not seem to

understand that the act of calling a scrolling method did not

change the Direction state.

Multi-object protocols. All four of the APIs we looked at

closely inspired questions about the relationship to other APIs.

For example, a ResultSet object is closed if the Statement object

that created it is closed or reused. Four questioners in the sample

struggled with this one issue (4646561, 4864920, 5840866,

10118129). Questioners also asked about the following other

relationships: Timers with threads, Sockets with data streams,

and URLConnections with Sockets. We did not include these

multi-object protocol issues in the primary results to focus

on the vast majority of protocol-specific tooling that does not

support multi-object protocols.

Terminology Confusion. Many of the questioners seem

to be confused by terminology. This type of confusion is

extremely common and not protocol-specific. However, the

frequency of its appearance in the data warrants a brief

discussion. Questioners often assumed a particular definition

for a term, and when the definition was wrong they struggled.

For example, questioner #9497100 assumed that canceling

a TimerTask would always abort the Task. The questioner

therefore tried to cancel the task in the task’s own run

method, in a failed attempt to halt execution immediately. Other

questions misinterpreted Socket.isConnected, Timer.schedule,

and URLConnection.inputStream.

Discussion. All of the characteristics just highlighted, except

terminology confusion, are protocol-specific. This suggests that

protocol-targeted tooling or languages may be necessary to

improve the usability of API protocols.

The challenge of missing state transitions suggests that

documentation should include a list of state transitions in

an easily digestible form. This would enable programmers to

quickly learn which transitions are, and are not, available. The

very existence of state test questions suggests the usefulness

of state tests. Josh Bloch, the designer of much of the Java

Standard Library including several of these classes, suggests

that all APIs with protocols “should generally have a state-

testing method indicating whether it is appropriate to invoke

state-dependent method[s].” [5, p. 242].

That repeating occurrence of multi-object protocols in the

forum mining data buttresses the evidence collected by Jaspan

and Aldrich [14] that multi-object protocols are important.

Therefore, this study motivates the those working on relation-

ship types [15, 1]. Unfortunately, many protocol-targeted tools

86

TABLE I
LISTS THE APIS, QUESTIONS AND MERGED TOPICS DISCOVERED IN THE FORUM MINING.

API Topic #Qs Question IDs

URLConnection
Cannot: Set request property after connected 2 331538, 5368535
Cannot: Reuse connection 1 4278917
Wanted: IsConnected state test 1 7614408

Timer

Cannot: Reschedule TimerTask 6 1041675, 1801324, 4388353, 6813654, 7631542, 8404736
Cannot: Change Scheduled time of TimerTask 4 5014132, 6555583, 6762099, 8173147
Confusion: Timer.cancel() vs. TimerTask.cancel() 2 1801324, 6477608
Cannot: Cancel running TimerTask 1 9497100
Wanted: State Test for TimerTask 1 13880202a

Socket Confusion: Closed vs. Connected 1 3701073b

ResultSet

Cannot: Read after end 1 3502005
Cannot: Call next on InsertRow 3 4874574, 6684753, 9836972
Cannot: Call scrolling methods on forwardonly 4 6367737, 6871641, 8032214, 9007051
Cannot: Read before calling next() 1 8039233

a
This question was discovered after the forum mining, but matches all of the criteria used to select the other questions.

b This is the only Socket protocol question, but as of Sep. 2013 it had the highest reputation score in this table, suggesting its importance.

Fig. 2. UML State Machine for ResultSet.

do not support and-states. The data suggests and-states are

particularly problematic, which in turn suggests that these

tools are missing an opportunity to address an important

usability challenge. Finally, the prevalence of terminology

confusion, suggests that API protocol designers should carefully

name state-related methods to ensure that the standard English

definition matches its use in the protocol.

These characteristics share one significant weakness with

the source from which they were derived. Each forum post

represents a snapshot of a single programmer’s thinking. It

is difficult to know whether these characteristic problems are

challenging for most programmers or just a tiny minority.

Similarly, it is difficult to know what common programmer

challenges were missed because they were resolved before

a question was ever asked. Finally, and most significantly,

the forum mining has given us a better idea of what is hard,

but we still need to understand why they are hard. What do

programmers do when trying to address these tasks? Why are

their tools and documentations inadequate? We address these

weakness in the laboratory observations we discuss next.

V. LABORATORY OBSERVATIONS

In this section, we describe the methodology and results of

the laboratory study. The aim of this study is to learn how

87

programmers approach protocol tasks (RQ2), with particular

focus on the information they seek (RQ3) and the resources

they use (RQ4). In this study, the tasks are taken from the forum

mining and therefore connected to practice. We discuss how

we transform the topics mined from Stack Overflow into tasks

in the next section. We then discuss the study design. Next,

we highlight observations from one particular task—inserting

a new row into a ResultSet—which we will use to illustrate

the important results from this study. Finally, we summarize

the results from all of the tasks including quantitative and

qualitative analysis.

A. Methodology

1) Topics to tasks: We converted each of the topics uncov-

ered by the forum mining study, as summarized in Table I, into

a corresponding programming task. The tasks were derived

from the code contained in the topical question(s). The tasks did

not include project context such as package names, or code that

was not protocol related. Each task included instructions and a

method annotated with pre and post-conditions. The source files

are available on the web.5 In some cases, a test case is included

with the task to trigger the bug. This was necessary whenever

the method was passed a Socket, TimerTask, ResultSet, or

URLConnnection instance.

The code in the method body was most commonly taken

directly from one of the questions related to a topic. However,

some topics required more creativity because the questions did

not include code. For example, the state-test related questions

did not contain code which motivated the questioner’s need

for the state test. Therefore, we created tasks that required

knowledge of the state. These tasks each involved writing a

method which takes a Timer or URLConnection instance as

an argument and uses the instance in a state-specific manner.

2) Example task: To understand better how tasks were

constructed, let us look at an example task in more depth.

We focus on a task corresponding to the topic “Cannot: Call

next on InsertRow.” The task involves inserting a new row in

a database table via a ResultSet instance and then trying to

call the next method.

The ResultSet protocol prohibits scrolling (e.g. calling the

next method), while the “cursor is on the insert row.” To

understand this better, let us look at the state machine diagram

show in Figure 2. The cursor position is modeled by the

abstract state Position. The Position state has two or-children,

CurrentRow and InsertRow, which represent the state of the

ResultSet when the cursor is on existing row or on the insert row

respectively. Note that the method moveToInsertRow transitions

the ResultSet from the CurrentRow state to the InsertRow

state. In reverse, the method moveToCurrentRow transitions

the object back to the CurrentRow.

A slightly abbreviate version of the code participants were

given is shown in Listing 1. Programmers were asked to fix a

bug, revealed by a test case, in the insertHarryBovik method.

5http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/
qualitative-study-tasks.zip

1 /∗∗
2 ∗ Precondition: rs is a CONCUR_UPDATABLE ResultSet
3 ∗ to an attached table with at least one row and String
4 ∗ columns labeled, ‘‘first’’ and ‘‘last’’
5 ∗
6 ∗ Postcondition: Insert a new row with ‘‘Harry’’ in the
7 ∗ ‘‘first’’ column and ‘‘Bovik’’ in the last column. Update
8 ∗ next row’s last name to ‘‘Carnegie’’.
9 ∗/

10 public void insertHarryBovik(ResultSet rs) {
11 rs.moveToInsertRow();
12 rs.updateString("first", "Harry");
13 rs.updateString("last", "Bovik");
14 rs.insertRow();
15 rs.next();
16 rs.updateString("last", "Carnegie");
17 rs.updateRow();
18 }

Listing 1. Source code for example task.

In particular, running the test case results in an SQLException

when the next method is called on line 15.

To fix the bug participants needed to add just one line

in the code. Before calling next, the ResultSet needs to be

transitioned to the CurrentRow state by calling the method

moveToCurrentRow. As we will see in Section V-B1, this task

was surprisingly difficult even for the expert programmers

performing the study.

The rest of the tasks have a similar flavor. They require

programmers to write new small programs or fix existing

small programs involving protocols. All require programmers

to navigate the state machine of an underlying object.

3) Study design: We have found that protocols are very

challenging for novice programmers or programmers with-

out significant experience using object-oriented libraries and

frameworks written in statically typed languages. Therefore we

recruited 6 programmers with at least 3 years of professional

experience with Java or C#. However, these programmers had

never used any of the particular libraries under evaluation. The

programmers were recruited via personal contacts.

Participants performed the tasks in a campus laboratory. They

worked with a computer that had been prepared with Eclipse

and a browser opened to the relevant JavaDoc. Participants

were asked to “think aloud.” The analysis of this study

relies on correctly interpreting what participants were looking

for while performing the tasks. Therefore, we followed Ko

et al. [18] and asked “what are you looking for?” when

participants forgot to think aloud, or their statements were

unclear. Participants screens and speech were recorded. The

study itself took between 1 and 3 hours, almost all of which

was spent performing programming tasks. Task instructions

were read to each participant and also provided in written form.

B. Results

In this section, we discuss the results of our observations.

These observations address RQ2, “How do programmers ap-

proach protocol tasks?” We first describe detailed observations

88

from one particular task and then present the aggregate results

from the full study.
1) Example task observations: We introduced the ResultSet

insertion task the participants performed in Section V-A2. This

task was the most time consuming for the participants — time to

completion ranged from 16 minutes to 49 minutes. In addition,

the participant observations of this task illustrate well the major

results we will discuss in the next section.

Recall from Section V-A2 that participants are debugging

a protocol violation. In particular, the next method is called

while the ResultSet’s cursor is on the insert row. However,

none of the participants immediately knew this was the source

of the problem.

All participants immediately read and interpreted the error

message “invalid cursor state: cannot FETCH NEXT, PRIOR,

CURRENT, or RELATIVE, cursor position is unknown.” Most

participants articulated a rapid-fire set of questions about the

details of the error message: e.g. “What is FETCH NEXT?,”

“Why is the cursor position unknown?” The participants seemed

to leave these questions unanswered and focus on the beginning

of the error message, “invalid cursor state.” The participants

recognized that this was protocol related and they asked one

of two questions: “What is the cursor status of [ResultSet]

rs?” (4 participants) or “Which cursor state does rs need to be

in to call next?” (2 participants). As we will discuss later in

detail later in this section, these two questions are instances of

common question categories.

Regardless of the question asked, all six participants looked

first at the method documentation for the next method to see

if it could help them answer their question. Unfortunately, the

next method documentation does not answer either question.

Three participants noted that the documentation states that a

SQLException is thrown “if a database access error occurs

or this method is called on a closed result set.” All three

immediately decided neither cited source was the cause of the

bug in this case.

The participants’ searches diverged from this point forward.

Three general categories of searches were used: linear scan

of task lines, linear scan of method documentation search,

undirected/random search through class documentation.

The fastest strategy, employed by two participants, was

to look at the method documentation of each method in

the source code one by one. They started at next (line 15)

and moved upward to insertRow, then updateString,6 and

finally to moveToInsertRow. These participants looked at the

documentation by hovering over the method name inside the

Eclipse code editor. This strategy is reasonably natural in an

IDE that supports hover documentation, but would require

constant switching between editor and webpage documentation

if a more traditional editor is used.

The fourth sentence of the ResultSet documentation for

moveToInsertRow helps participants identify the state that

the result set is in: “Only the updater, getter, and insertRow

6One participant actually moved down to the updateRow documentation
before proceeding upward again to updateString. However, the strategies were
otherwise identical.

methods may be called when the cursor is on the insert row.”

All 3 participants that read this documentation articulated a

new understanding of the exception message and articulated a

follow up question. One participants said, “Aha! The cursor is

on the insert row. How do we get the cursor off the insert row

to call next?”

Fortunately for the participants that reached the move-

ToInsertRow documentation the answer to the follow-up

question was immediately evident. To call next, one must

call moveToCurrentRow, which both has a parallel name and

appears after moveToInsertRow in the documentation.

One participant read the method documentation in the

order they appeared on the JavaDoc webpage (the previously

discussed participants scanned in the order they appear in

the task code), which was the slowest search strategy. This

participant looked at the next documentation in the Javadoc

generated web page. On the web page, the next method

appears first in the Method Detail list. The order of the method

documentation matches the order that methods appear in the

ResultSet source code. The participant scanned all of the

documentation between next and moveToInsertRow which

represents 2240 lines of the ResultSet source code and more

than 100 methods. Thankfully, much of it is repetitive and could

therefore be skimmed. After reaching the moveToInsertRow

documentation, this participant acted similarly to the task line

searchers.

The remaining three participants, like the method docu-

mentation scanner, read the next documentation on the web

page. From there these participants skipped around somewhat

randomly on the webpage. All three of these participant read

at least a few irrelevant sections of method documentation.

However, these three eventually found themselves at the top of

the webpage at the class level documentation. The penultimate

section of this documentation provides a code example that

“moves the cursor to the insert row, builds a three-column row,

and inserts it into rs and into the data source table using the

method insertRow.”

After reading the example, the participants compared the

example code to the buggy code and noticed the missing call

to moveToCurrentRow in the buggy code. The participants

read the method documentation for moveToCurrentRow before

adding it to insertHarryBovik. One explained he was “trying

to figure out if you could call next on the current row?” The

observations from this task are illustrative of the aggregate

results we discuss next.

2) Aggregate results: To address RQ3 (“What information

do programmers seek and have difficulty locating while per-

forming protocol tasks?"), we transcribed the audio recordings,

noting the time of every statement made or question asked by

the participants. We will refer to anything the participant says

as a quote. We then watched the video recording and mapped

these quotes to blocks of time. Whenever we believed the

activity on screen was motivated by a quote, we assigned the

block in which it was performed to the quote. This mapping

allows me to estimate how much time was spent on each quote.

89

In the vast majority of cases, the mapping was based on

simple temporal ordering — if the activity was performed

during or after quote A and before any other quote it was

assigned to quote A. In a small number of cases, an activity

did not seem to match the preceding quote, and therefore the

activity left unassigned. This phenomenon was rare because the

experimenter usually noticed when this happened and asked the

participant to explain his or her actions. In total, we assigned

87% of participant time to a quote.

We then performed open-coding [27] on the quotes, looking

for similar quotes that tended to repeat. Four categories of

quotes were particularly common. Each of these categories

represents a state search task. In total, 82% of the assigned

time (or 71% of the total time) was spent working on the

following four categories of search. We list here each general

category followed by two specific instances of that category

drawn from the transcripts:

A What abstract state is an object in?

• “Is the TimerTask scheduled?”

• “What is the cursor state of [ResultSet] rs?”

B What are the capabilities of an object in state X?

• “Can I schedule a scheduled TimerTask?”

• “What can I do on the insert row?”

C In what state(s) can I do operation Z?

• “When can I call doInput?”

• “Which ResultSets can I update?”

D How do I transition from state X to state Y?

• “How do I get off the insert row to the current row?”

• “Which method schedules the TimerTask?’

These search problems are all specific to protocols, and

therefore the protocol tasks are dominated by state search.

To clarify the coding process, consider the two instances

of category A listed above. The instance, “Is the TimerTask

scheduled,” contains the name of an abstract state of TimerTask,

“scheduled," so that part of the instance was generalized to

“state X.” “The TimerTask” refers to a an object so that part

of the question was generalized to “an object.” Therefore, the

question was first coded as “Is the object in state X?” In the

second instance, “What is the cursor status of [ResultSet] rs,"

the “cursor status” refers to the state of the ResultSet. This

instance maps directly to “What abstract state is an object in?”

The code for the first instance was later merged into this more

general category.

Many concrete questions are compositions of several cate-

gories. Answering, “What do I need to do to the conn to set

doInput?” requires answering general questions C and D. The

method doInput can only be set in the disconnected state (C),

and the only way to get a disconnected connection is to create

a new connection (D). Similarly, answering “What methods can

I call on [the object referenced] by [variable] conn?” requires

answering a combination of A and B.

We break down the questions and time spent in Figure 3.

These charts break down only the 71% subset of time spent on

state search activities. As you can see, the only combination

categories that appeared in the quotes were A+B and C+D.

 
 
 
 

Fig. 3. Question type frequencies.

It’s possible to come up with other combinations (e.g. B+D:

“I wonder what would happen if I find a transition to state Y?)

but harder to envision how they would be useful.

The question types appeared with almost equal frequency,

except for category B which was relatively infrequent. We

expect category B, which is relatively exploratory, to be more

useful in greenfield tasks than the tasks in this study.

A reader who compares the two pie charts will observe that

the category C+D questions were relatively time consuming

(31% of time was spent on 16% of questions). This relationship

held for all 6 participants—C+D questions had the highest

average time spent for everyone. When category D questions

occur alone, it is possible to guess the method name that will

transition the object to the wanted state. To give one trivial

but common example, if the state is called “connected” it is

likely that you want to call a method called connect. However,

when you do not know what state you want to transition to,

the implication of the category C component of the question,

answering question D requires a global search of the class

methods.

Resources. This subsection addresses RQ4, “What resources

do programmers use while perform- ing protocol tasks?” Par-

ticipants were allowed to use any resource they liked. However,

participants spent 76% of their total time on documentation

webpages or hovering over a method documentation. This

result conforms with expectations set by the studies discussed

in Section III.

We also noted patterns in the particular documentation

looked at by programmers. In 56 out 74 cases (including

all 6 programmers in the Result Set insertion example) the

programmer looked first to the documentation related to the

method call occurring at the exception location to solve their

problem (next in the Result example). In 13 of the remaining 18

cases the programmer looked first at the method documentation

one line above or below the exception location.The participants

never looked at the documentation related to the parameter

types, including the receiver type, of the method being called

when the exception occurs.

Unfortunately, the exception-location method documentation

was not the right place to look for the information developers

90

were seeking. We already discussed the problem with the

Result.next documentation, but the ResultSet.get* methods

were similarly unhelpful for the “Cannot: read after end”

task. Equally commonly, the information needed is buried

in the very last element of the documentation, the @throws

annotation. This information is not displayed in Eclipse

hover documentation by default. It was also often skipped by

developers reading the documentation in the web page, even

when they were looking for the source of an exception! These

findings support tools that push rules necessary for invoking

methods to developers, like eMoose directives [7].

Question characteristics. We now return to two of the char-

acteristics discussed in Section IV-D1. Participants performed

two tasks that specifically required the participants to determine

the state of an unknown instance. In both cases, all participants

expressed hope for or requested a state test method. More

surprisingly, participants requested state test method in 5 other

instances. This further reinforces the advice that state test

methods should always be provided.

We mentioned that missing state transitions caused frequent

questions. However, type qualifier protocols—in which objects

never support certain methods after construction—were very

easy for participants. Participants seemed to intuitively under-

stand that a ResultSet is created as scrolling or forward only

and cannot be changed thereafter. On the other hand, lifecycle

protocols, in which the state transitions only moved in one

direction frustrated the participants.

VI. THREATS TO VALIDITY

We started the forum mining with a large list of classes

from the Java Standard Library. These were taken primarily

from the results of a single study [2]. Beckman’s study

used a static analysis to find candidate protocols for manual

investigation. This analysis missed protocols whose violations

do not result in a thrown exception, nor protocols that check

for protocol violations in non-standard ways. The interested

reader is referred to Section 2.4 of that paper for further details.

More generally, all of the APIs in our study are both libraries

and from the “resource programming” domain. The protocol

barriers may be different for other types of APIs.

We also do not know exactly how representative the Stack

Overflow questions are of actual problems encountered in

practice, nor if they really are the most difficult problems. For

example, programmers may look to other sources to solve their

hardest problems. Similarly, the particular demographic that

uses Stack Overflow the most may have different problems

than a more representative sample.

The developers who performed the laboratory study were

professional engineers, but they were all personal contacts.

It is therefore possible that they are very unrepresentative

of the population of all skilled developers. Furthermore,

the developer sample size was very small. A larger, more

representative sample of developers may have needed very

different information or very different resources.

Finally, a single experimenter analyzed all of the forum

questions, assigning quotes to programmer activity, and cate-

gorizing quotes. Another rater would have enabled a reliability

assessment and may have caught errors. The question categories

may be poorly defined and the quantitative results may be

skewed by experimenter biases.

VII. CONCLUSION

In this study, we identified five common characteristics

of the questions about API protocols that developers find

particularly problematic. Using the tasks that brought about the

problematic questions, we found that experienced developers

spent the majority of their time (71%) addressing four types of

state searches, some of which are poorly supported by current

approaches to documentation.

Our observations suggest that protocol-targeted tools, lan-

guages, and verification techniques will be most effective if

they enable programmers to efficiently answer the four state

search questions. Unfortunately, many of the tools in this area

do not directly address any of these questions.

That said, when a protocol is violated some of these tools

provide an error message that tells the developer what part of

the protocol has been violated. In particular, the messages

usually say what abstract state the object is in, thereby

answering question A. Unfortunately, we are unaware of any

tool that gives the developer this information when there is not

an error. This is probably achievable fairly simply for tools

that rely on type systems or static analysis, but is much more

difficult for dynamic checkers.

The research community has provided substantially less

support in answering the other three state search questions (B,

C, and D). However, some programming languages support

separating members by abstract state which will likely make

it easier for developers to answer B and C. Similarly, a first

class state change operation in a programming language makes

it easier to answer D.

Throughout this paper we discussed many examples in

which the information needs of developers do not match

the documentation at the location it is needed. In most of

the instances the relevant instructions are simply misplaced.

We urge writers of documentation to carefully consider how

documentation is used when considering its structure. In

addition, we believe there is a research opportunity to generate

protocol-specific documentation in all of the locations it is

needed from simple specifications.

Finally, we mentioned briefly in Section IV-C that answerers

sometimes suggested alternative libraries to questioners. These

answers were often accepted and/or received many “up-votes”

from the Stack Overflow community. This suggests that

developers who struggle with protocol violations abandon the

APIs. Researchers and practitioners are very interested in what

causes tools to be adopted by developers. This study provides

evidence that potential adopters can be driven away by difficulty

using an API correctly.

VIII. ACKNOWLEGEMENTS

This work was supported by NSA lablet contract #H98230-

14-C-014, and NSF grant #CCF-1116907.

91

REFERENCES

[1] Stephanie Balzer and Thomas R. Gross. Verifying multi-

object invariants with relationships. In ECOOP 2011 –
Object-Oriented Programming, pages 358–382. Springer

Berlin Heidelberg, 2011.

[2] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An

empirical study of object protocols in the wild. In

ECOOP 2011 – Object-Oriented Programming, pages

2–26. Springer Berlin Heidelberg, 2011.

[3] Kevin Bierhoff and Jonathan Aldrich. Lightweight object

specification with typestates. In Proceedings of the
10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, ESEC/FSE-13,

pages 217–226, New York, NY, USA, 2005. ACM.

[4] Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich.

Practical API protocol checking with access permissions.

In Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming, Genoa,

pages 195–219, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] Joshua Bloch. Effective Java. Addison-Wesley Profes-

sional, second edition, 2008.

[6] John M Daughtry, Umer Farooq, Jeffrey Stylos, and

Brad A Myers. API usability: CHI’2009 special interest

group meeting. In Proceedings of the 27th international
conference extended abstracts on Human factors in
computing systems, pages 2771–2774. ACM, 2009.

[7] Uri Dekel and James D. Herbsleb. Improving API

documentation usability with knowledge pushing. In

Proceedings of the 31st International Conference on Soft-
ware Engineering, ICSE ’09, pages 320–330, Washington,

DC, USA, 2009. IEEE Computer Society.

[8] Robert DeLine and Manuel Fähndrich. Typestates for

objects. In Proceedings of the 18th European Conference
on Object-Oriented Programming, ECOOP ’04, pages

465–490, London, UK, 2004. Springer-Verlag.

[9] Matthew B. Dwyer, Alex Kinneer, and Sebastian Elbaum.

Adaptive online program analysis. In Proceedings of the
29th international conference on Software Engineering,
ICSE ’07, pages 220–229, Washington, DC, USA, 2007.

IEEE Computer Society.

[10] Brian Ellis, Jeffrey Stylos, and Brad Myers. The factory

pattern in API design: A usability evaluation. In Pro-
ceedings of the 29th international conference on Software
Engineering, ICSE ’07, pages 302–312, Washington, DC,

USA, 2007. IEEE Computer Society.

[11] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-

sensitive type qualifiers. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language
design and implementation, PLDI ’02, pages 1–12, New

York, NY, USA, 2002. ACM.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design patterns: elements of reusable object-
oriented software. Addison-Wesley, 1995.

[13] Benjamin V. Hanrahan, Gregorio Convertino, and Les

Nelson. Modeling problem difficulty and expertise

in stackoverflow. In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work
Companion, CSCW ’12, pages 91–94, New York, NY,

USA, 2012. ACM.

[14] Ciera Jaspan and Jonatathan Aldrich. Are object protocols

burdensome? an empirical study of developer forums. In

Evaluation and Usability of Programming Languages and
Tools Workshop (PLATEAU ’11), 2011.

[15] Ciera Jaspan and Jonathan Aldrich. Checking framework

interactions with relationships. In ECOOP 2009 – Object-
Oriented Programming, pages 27–51. Springer Berlin

Heidelberg, 2009.

[16] Ciera N.C. Jaspan. Proper Plugin Protocols. PhD thesis,

Carnegie Mellon University, December 2011. Technical

Report: CMU-ISR-11-116.

[17] Andrew J. Ko and Brad A. Myers. Finding causes of

program output with the Java Whyline. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 1569–1578, New York, NY, USA,

2009. ACM.

[18] Andrew J. Ko, Robert DeLine, and Gina Venolia. Infor-

mation needs in collocated software development teams.

In Proceedings of the 29th international conference
on Software Engineering, ICSE ’07, pages 344–353,

Washington, DC, USA, 2007. IEEE Computer Society.

[19] George Kuk. Strategic interaction and knowledge sharing

in the kde developer mailing list. Management Science,
52(7):1031–1042, 2006.

[20] Thomas D. LaToza, David Garlan, James D. Herbsleb,

and Brad A. Myers. Program comprehension as fact

finding. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, ESEC-FSE ’07, pages 361–370, New York,

NY, USA, 2007. ACM.

[21] Lena Mamykina, Bella Manoim, Manas Mittal, George

Hripcsak, and Björn Hartmann. Design lessons from

the fastest Q&A site in the west. In Proceedings of
the SIGCHI conference on Human factors in computing
systems, pages 2857–2866. ACM, 2011.

[22] Samuel G. McLellan, Alvin W. Roesler, Joseph T. Tem-

pest, and Clay I. Spinuzzi. Building more usable APIs.

IEEE Software, 15(3):78–86, 1998.
[23] Chris Parnin and Christoph Treude. Measuring api

documentation on the web. In Proceedings of the
2nd international workshop on Web 2.0 for software
engineering, pages 25–30. ACM, 2011.

[24] Martin P. Robillard and Robert DeLine. A field study of

API learning obstacles. Empirical Software Engineering,
16:703–732, 2011.

[25] Martin P. Robillard, Eric Bodden, David Kawrykow,

Mira Mezini, and Tristan Ratchford. Automated api

property inference techniques. Software Engineering,
IEEE Transactions on, 39(5):613–637, 2013.

92

[26] J. Sillito, G.C. Murphy, and K. De Volder. Asking and

answering questions during a programming change task.

Software Engineering, IEEE Transactions on, 34(4):434–
451, 2008.

[27] Anselm L. Strauss. Qualitative Analysis for Social
Scientists. Cambridge University Press, June 1987.

[28] Robert E. Strom and Shaula Yemini. Typestate: A

programming language concept for enhancing software

reliability. IEEE Transactions on Software Engineering,
12(1):157–171, January 1986.

[29] Jeffrey Stylos and Steven Clarke. Usability implications

of requiring parameters in objects’ constructors. In Pro-
ceedings of the 29th international conference on Software
Engineering, ICSE ’07, pages 529–539, Washington, DC,

USA, 2007. IEEE Computer Society.

[30] Jeffrey Stylos and Brad A. Myers. The implications of

method placement on API learnability. In Proceedings
of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, SIGSOFT ’08/FSE-

16, pages 105–112, New York, NY, USA, 2008. ACM.

[31] Joshua Sunshine. Protocol Programmability. PhD thesis,

Carnegie Mellon University, December 2013. CMU-ISR-

13-117.

[32] Joshua Sunshine, James D. Herbsleb, and Jonathan

Aldrich. Structuring documentation to support state search:

A laboratory experiment about protocol programming. In

European Conference on Object Oriented Programming
(ECOOP), 2014.

[33] Christoph Treude, Ohad Barzilay, and M-A Storey. How

do programmers ask and answer questions on the web?:

NIER track. In Software Engineering (ICSE), 2011 33rd
International Conference on, pages 804–807. IEEE, 2011.

[34] Bogdan Vasilescu, Andrea Capiluppi, and Alexander Sere-

brenik. Gender, representation and online participation:

A quantitative study of stackoverflow. In International
Conference on Social Informatics. ASE, 2012.

[35] John Whaley, Michael C. Martin, and Monica S. Lam. Au-

tomatic extraction of object-oriented component interfaces.

In Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA ’02,

pages 218–228, New York, NY, USA, 2002. ACM.

[36] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai.

Example overflow: Using social media for code recom-

mendation. In Recommendation Systems for Software
Engineering (RSSE), 2012 Third International Workshop
on, pages 38–42. IEEE, 2012.

93

