

Influence of Social and Technical Factors for Evaluating
Contribution in GitHub

Jason Tsay, Laura Dabbish, James Herbsleb
School of Computer Science and Center for the Future of Work, Heinz College

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 USA

{jtsay, dabbish, jdh}@cs.cmu.edu

ABSTRACT
Open source software is commonly portrayed as a meritocracy,
where decisions are based solely on their technical merit.
However, literature on open source suggests a complex social
structure underlying the meritocracy. Social work environments
such as GitHub make the relationships between users and
between users and work artifacts transparent. This transparency
enables developers to better use information such as technical
value and social connections when making work decisions. We
present a study on open source software contribution in GitHub
that focuses on the task of evaluating pull requests, which are one
of the primary methods for contributing code in GitHub. We
analyzed the association of various technical and social measures
with the likelihood of contribution acceptance. We found that
project managers made use of information signaling both good
technical contribution practices for a pull request and the strength
of the social connection between the submitter and project
manager when evaluating pull requests. Pull requests with many
comments were much less likely to be accepted, moderated by
the submitter's prior interaction in the project. Well-established
projects were more conservative in accepting pull requests. These
findings provide evidence that developers use both technical and
social information when evaluating potential contributions to
open source software projects.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments -
Integrated Environments; H.4.3 [Information Systems
Applications]: Communications Applications.

General Terms
Management, Measurement, Human Factors

Keywords
GitHub; transparency; open source; social computing; signaling
theory; social media; contribution

1. INTRODUCTION
Traditionally, open source software (OSS) communities have
been characterized as meritocracies [26] where "code is king" and
decisions are based solely on technical merit. Multiple popular
open source software foundations such as the GNOME

Foundation [10], Apache Software Foundation [14], and Mozilla
Foundation [21] officially describe themselves as meritocracies.
For example, in the case of Mozilla, “authority is distributed to
both volunteer and employed community members as they show
their abilities through contributions to the project” [21]. These
“abilities” are generally assumed to be technical expertise
brought to the software project by various developers.
Previous studies on open source software suggest that there are
many more factors that influence contribution evaluation beyond
technical merit. In fact, prior work suggests that there exists a
complex social structure around contribution in open source
software [8]. New contributors to traditional open source projects
are expected to “lurk” or monitor project mailing lists before
even attempting contributions. These projects have complex
socialization processes that need to be undertaken before
accepting technical contributions [17].
With the advent of social media and distributed version control
systems, many open source software projects operate with an
unprecedented degree of transparency. With social media
attached to the development activity, relationships between
developers and actions on code are made visible, and developers
use these as signals from which they infer important but hidden
qualities [6]. For example, project managers are able to view all
of the prior projects that a newcomer might have participated in
and evaluate them as signals of developer skill before deciding
whether or not to accept a contribution. Newcomers looking for
open source projects to join might investigate what prior
contribution attempts look like and how they have fared, as
signals of openness and project norms. Studies on these kinds of
transparent environments suggest that developers make complex
inferences about other developers and projects using these kinds
of information [5][19].
With information available from potentially millions of
developers and millions of repositories in these transparent work
environments, then what information do software developers use
when evaluating software contributions? Conventional wisdom
on open source projects suggests that technical merit of the
contribution itself should be all-important [26]. Prior literature on
traditional open source suggests that prior interactions with a
project and project culture should also have an important effect.
In a transparent environment, the visible relationships between
users may also have an important effect on contribution
decisions. These environments also make explicit the relationship
between users and work artifacts such as repositories information
that project managers may be making use of. We aim to better
understand how different signals are used by software project
managers in order to evaluate contributions in open source
projects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00
http://dx.doi.org/10.1145/2568225.2568315

356

With this work, our goal is to deepen our understanding of how
information in transparent open source software environments is
used to evaluate contributions. In particular, we investigate
signals and cues associated with contribution acceptance. By
better understanding how developers in transparent work
environments use information available to evaluate contributions,
we can inform tool design for similar work environments. For
example, site designers may choose to make important signals
more salient to developers. To answer these questions, we
performed an analysis of contribution from thousands of projects
on the social open source project-hosting site GitHub. For our
unit of analysis, we use the pull request, one of the primary
methods for code contributions in GitHub, where a developer
submits a code change to a project that notifies the project core
members for a review of the code contribution to evaluate
whether or not to accept the change. GitHub is an example of a
new class of work environment that offers greater transparency of
work actions and social relationships.
We found that both technical and social signals had strong
associations with contribution acceptance. In particular, social
signals of the connection between the submitting user and the
user managing the contribution were especially associated with
contribution acceptance. Contributions with many associated
comments were much less likely to be accepted, perhaps due to
contention between the submitter and the core project team. The
negative influence of comments was moderated, however, by the
submitter's prior interaction in the project. In the following
sections we consider related research on the contribution
practices of open source software projects and online
communities in order to generate hypotheses, describe our multi-
level logistic model of pull request acceptance, report the results
of our analysis, and discuss the implications of our findings.

2. TRANSPARENCY AND OPEN SOURCE
Previous work on open source software projects and developers
suggests that there is a complex social and technical structure
around the concept of making contributions to projects. We
position our work in the literature on newcomers making
contributions in online communities more generally. We also
examine new software development environments that make use
of transparency and social media features, which sheds light on
the kinds of signals that are visible and the inferences developers
make. Informed by previous work, we generate hypotheses to test
in our analysis of contributions in GitHub.

2.1 Open Source Software
As open source software often relies on the volunteer efforts of
software developers, the survival and well-being of open source
software projects often depends on attracting contributions from
the larger community [4]. Developers choose to offer
contributions to open source software projects for a variety of
reasons. Hars and Ou [13] performed a survey on the motivations
of open source developers. They found that developers would
contribute their time and effort for various reasons, with self-
determination and developing human capital the most highly
ranked. Other highly ranked motivations include peer
recognition, self-marketing, and a developer's personal need for
the software project. Lakhani and Wolf [18] and Roberts et al.
[25] found that open source developers are motivated by both
intrinsic motivations such as intellectual stimulation, and
extrinsic motivations such as improving skills.
Literature on the contribution process for open source software
projects suggests that accepting contributions, especially from

unknown developers, is a complex process. Krogh et al. [17]
found in their study of the contribution process in the Freenet
open source project that there are "joining scripts" that successful
newcomers follow before offering contributions. These joining
scripts involve participating in prior activity such as lurking on
the project's mailing list, participating in technical discussions,
and reporting bugs. Developers that offered technical
contributions without following this joining script tended not to
have their contributions accepted into the project. Ducheneaut [8]
made a similar observation in the Python project, noting a
progressive socialization process that requires both displaying
technical skills and creating the right social relations. In order for
contributions to be accepted into the project, the contribution
must both be technically sound and be vetted by core members of
the project. For successful and complete socialization (becoming
an "insider"), a developer needs to recruit core members of the
project as a network of "allies".
Shah [27] observed that this contribution process also leads to
evolution for a developer's level of participation in the project.
Most developers make simple initial contributions such as bug
fixes in order to fulfill some need. A number of these developers
choose to continue to participate in the project, evolving from a
need-based participation to a hobbyist. Often, these developers
will also gain committer rights or the right to freely commit their
changes directly into the project.
As open source software projects evolve, their contribution needs
tend to change as the project matures. Nakakoji et al. [22]
observed that as open source projects evolve, the communities
around the project co-evolve along with the open source software
system. Contributions to the project influence the transformation
of both the software system and the community. Nakakoji et al.
also defined at least three different classes of open source
projects that evolve into each other. These project classes each
have their own unique contribution needs and selection criteria.
For example, a Service-Oriented OSS system like PostgreSQL
tends to be very conservative in terms of accepting contributions
due to a need for stability. Stewart and Gosain [28] also found
that project maturity in open source software projects on
SourceForge moderates both objective and subjective
performance outcomes. For example, the effect of task
completion on perceived effectiveness is more positive for more
mature projects.

2.2 Contribution in Online Communities
Open source projects are a form of online community. To
survive and thrive, online communities face the challenge of
attracting and evaluating contributions. Kraut and Resnick [16]
claim that when dealing with newcomers, successful online
communities must meet a number of challenges: attracting
newcomers, selecting among the newcomers, retaining
newcomers, socializing newcomers, and protecting existing
members from potential problems newcomers may bring. When
evaluating newcomers, communities will often screen potential
members by using signals of whether or not a newcomer is a
good fit. In order to gather information about these signals,
diagnostic tasks are often used such as solving CAPTCHAs to
screen automated attackers or acquiring experience points and
weapons to signal character prowess in the online game World of
Warcraft. An open question is whether transparent work
environments already provide these kinds of signals by virtue of
making past work activity visible.
In the community of Wikipedia, Bryant et al. [3] found that some
newcomers will transition from making peripheral contributions

357

to specific articles into core users that help maintain Wikipedia
and its community as a whole. Newcomers learn the conventions
and contribution rules of the Wikipedia community through
observation (lurking) and direct mentoring from more
experienced users. Related to this concept of mentoring is a
community-wide norm of "don't bite the newcomers". The nature
of users' contributions also tends to change as newcomers become
more socialized, from purely making edits in articles to also
participating in community discussions, administrative duties,
and "meta" tasks.
Iriberri and Leroy [15] found that online communities have
multiple lifecycle stages with different contribution needs. For
example, during the earlier Growth stage, communities are more
concerned with attracting new members and supporting
interactions while the later Maturity stage, communities may
prefer to recognize contributions and increase visibility of certain
members.

2.3 Transparent Work Environments
We use GitHub as an example of a new class of transparent
software environments that incorporate social media features to
make work more visible. Previous qualitative research on GitHub
by Dabbish et al. [5] showed that developers are able to make a
variety of subtle inferences about other developers and projects
using the social media cues. They use these inferences in
practical ways, for instance to help manage their projects,
discover user needs, and recruit developers. This research also
suggested that the feed of project activity generated by social
media strongly influences who and what developers attend to.
Developers in this study used signals of community attention to a
project or event in the feed to determine if a project was worth
using or a discussion was worth reading. Project managers,
especially those in popular projects that received many
contributions (pull requests) per day, would make inferences
about the quality of code contributions and submitter competence
based on these signals. In some cases, project managers would
directly communicate with submitters about contributions in
order to solicit or negotiate changes. In some cases, multiple
rounds of comments were necessary in order to establish shared
understanding. The transparent nature of GitHub also led
developers to become acutely aware that their work actions had
an audience. These audience pressures encouraged developers to
create more legible contributions with “snappy” commit
messages and clean code because users would potentially later
use the commit history to make inferences such as developer
intention and competence.
Marlow et al. [19] found that when GitHub developers engage in
information-seeking behaviors, they use signals in the
environment to form impressions of users and projects. For
example, impressions of general coding ability could be gleamed
from the contents of a GitHub user's profile. Signals of whether
or not a developer possesses specialized project-relevant skills
were embedded in the user's activity log. Project managers would
often account for uncertainty when evaluating contributions,
straightforward and easily verifiable changes were often accepted
"as is" whereas complicated, uncertain changes would require
discussion before acceptance. In these cases, project managers
would often engage in discussion with the submitter in order to
negotiate the change. In these cases, where the value of the
contribution was uncertain, project managers would make use of
both code-based factors and person-based factors. For example, a
project manager may weigh the cost of fixing a contribution
against the benefit of recruiting a new member to the project.

Pham et al. [23] found in their study of the testing culture in
GitHub that project managers would demand that contributions
include tests in certain cases. For example, contributions that
introduced new features were expected to include tests. On the
other hand, contributions that involved existing code, especially
if the change was small like a bug fix, may or may not require
tests. Also, if the project manager trusted the submitting
developer, the contribution tended to be evaluated more leniently.
Project managers also saw an urgent need for automatic testing in
their projects due to the large group of peripheral developers and
general issues of scale. Many submitters would include tests as a
method for highlighting the value of their contribution to the
project manager. The transparent nature of GitHub helped lower
the barrier for including tests in contributions. For example, if
tests for existing parts of the codebase were prominent and
visible, submitters would be much more likely to make use of
these existing tests and include tests in their own contributions.

2.4 Research Questions and Hypotheses
Our examination of literature on contributions in open source
software and online communities suggests a number of
potentially important factors in evaluating contributions in
transparent work environments such as GitHub.

2.4.1 Technical Contribution Norms
We see in prior work about GitHub that there are certain
contribution norms that signal a technically well-prepared
contribution. For example, project managers see an urgent need
for automatic testing in their projects in order to maintain quality
as the number of peripheral developers scales [23]. So, project
managers tend to value contributions that include test cases more
highly. Another example of such a signal is the community norm
of having legible, easy-to-evaluate pull requests [5].
Contributions that display these signals of technical value may
indicate a well-thought out technical submission that is also
easier for a project manager to evaluate [5].
H1: Contributions that show signs of following technical
contribution norms are more likely to be accepted.

2.4.2 Social Connection
In traditional open source software projects, newcomers often
need to “recruit” core members of a project in order to have their
contributions accepted [8]. This process involves knowing who
the key core members are and being able to convince them of the
usefulness of the contribution, especially if the code contribution
is complex. Often, these key members expect newcomers to have
previously participated in technical discussions and other
peripheral actions in order to learn project-specific norms and
prove suitability before submitting contributions [17]. In GitHub,
these kinds of social connections are visible and made explicit,
perhaps making social connections between submitters and
project managers more salient.
H2: Contributions from submitters with a stronger social
connection to the project are more likely to be accepted.

2.4.3 Highly Discussed Contributions
Certain contributions raise uncertainty about their value for a
project and subsequently generate more discussion [19]. Changes
that required high amounts of discussion tend to be more closely
scrutinized by more members of the site, as GitHub users would
look at discussion on a contribution as a signal of controversy.
These contributions may be less technically sound, more
complicated to evaluate, or simply controversial in terms of
project direction or implementation strategy. Due to the high

358

degree of uncertainty, project managers may then be less willing
to accept the contribution.
H3: Contributions with a high amount of discussion are less
likely to be accepted.

2.4.4 Decision-Making for Highly Discussed
Contributions
When the value of a contribution is uncertain, project managers
may employ different standards when evaluating the
contributions [19]. In the cases of contributions with high
amounts of discussion, we expect both the tone of the discussion
and the degree of uncertainty to change depending on differences
between the technical nature of the contribution and the social
relationship between the submitter and the core project team.
These different social and technical factors should then moderate
the uncertainty in highly discussed contributions.
H4: Acceptance of highly discussed contributions will be
moderated by both social and technical factors.

2.4.5 Submitter’s General Community Standing
Previous research on GitHub has found that developers often use
inferences about developers and software projects to evaluate
them [19]. This research suggests the identity of the submitter
and/or the software project may affect how contributions are
evaluated. Members of the GitHub community regard certain
members as being at a higher standing. Some prolific developers
are even considered "coding rockstars" by the overall community
[5]. Project managers who receive contributions from higher
standing submitters may then be more willing to accept them
based on the submitter’s status.
H5: Contributions from submitters with a high status in the
general community are more likely to be accepted.

2.4.6 Submitter’s Status in Project
With open source software projects, there often is a structure of
"core" and "periphery" developers, with core developers being
the few central developers who implement most of the code
changes and make important project direction decisions and
peripheral developers being the "many eyes" of the project that
make small changes such as bug fixes [20]. Core developers who
make contributions to their own project may then be more likely
to have their contributions accepted by fellow project managers.
H6: Contributions from submitters that hold higher status in a
specific project are more likely to be accepted.

2.4.7 Project Establishment
As open source software projects progress through their lifecycle,
their needs tend to differ from less mature projects [22]. The
development stage of an open source project also tends to
moderate its performance outcomes [28]. As projects evolve,
their contribution needs may also co-evolve [22]. More
established projects may be more service-oriented with many
downstream dependencies. Project managers are often aware that
their projects are depended on by other, perhaps more high
profile projects. For example, certain popular websites may
depend on a particular library on GitHub, so a broken release
may also break the popular website [5]. Project managers of
established projects may then be much more conservative when
accepting contributions in light of these dependencies.
H7: Contributions to established projects are less likely to be
accepted.

3. METHODS
To answer our research questions, we created and analyzed a
dataset from the social open source software hosting site GitHub
[12]. We selected a sample of pull requests on GitHub and
gathered information on the pull requests, the submitting users,
and the project the pull request was submitted to. From this
dataset, we fit a statistical model that associates social and
technical contribution measures with the likelihood of pull
request acceptance. In this section we present descriptions of the
GitHub setting, our data collection procedures, measure
calculation, and analysis technique.

3.1 Description of the Research Setting
GitHub is a project-hosting site started in 2008 that brands itself
as "Social Coding." The site offers both free open source project
hosting and paid private hosting and is home to over ten million
repositories [1]. Some of the more popular open source software
projects that GitHub hosts include Ruby on Rails and jQuery. We
selected GitHub as our research setting because it implements
many of the social networking features found in well-known
social networking sites such as Facebook and Twitter to improve
collaboration between software developers through transparency.
GitHub allows potential project contributors to "fork" or make a
personal copy of any public project where they can make changes
to, add, or alter functionality, without disturbing the code in the
original branch. This potential participant can then request that
code changes in their personal copy be merged into the project’s
main repository. This can be accomplished by creating a "pull
request” to the original project. The project manager has several
options to "close" the pull request, including accepting the
offered contribution and merging it into the project's code base or
rejecting the contribution. At the same time, managers and other
interested users may comment on the pull request, perhaps to
suggest improvements or negotiate over the code change. Of
course, project managers may also ignore the contribution,
leaving the pull request "open".
GitHub also provides a set of social networking features. These
include the ability for developers to "follow" other members in
the community and to "star" the repositories of different projects.
Following directs events about actions by a developer to the
participant’s news feed. Examples of such events include the
creation of a new project or the starring of an existing project by
a followed participant. Much of the followed participants’ social
activity is also visible in the feed, including changes to the set of
users that person is following. Starring a repository works
similarly to a bookmarking system, adding the starred project to a
list of projects for a particular user. In addition, participants have
a profile page that lists personal information as well as activity-
related information such as the repositories they own and watch
as well as the participants that they follow.

3.2 Pull Request Selection
We create a dataset of pull requests and the users and repositories
associated with each pull request through sampling for active,
collaborative projects on GitHub. Our dataset comprises
information gathered from the GitHub Application Programmer
Interface (API). First, we drew a sample of repositories from the
GitHub Archive dataset [11] on July 17, 2013 with the following
sampling criteria:
1) Excluded forks, developer-specific copies of repositories often
meant for interim development work, in order to avoid double-
counting contributions in our model.

359

2) Excluded repositories that have not had at least one event of
activity within one week prior to data collection, July 10, 2013 in
order to avoid inactive projects.
3) Excluded repositories that do not use the GitHub issue tracker,
as we also use the issue tracker as a source of data.
This selection included 185,342 repositories. We further refined
the selection using the GitHub API to retrieve more detailed
information about each repository with the following criteria:
1) Removed each repository that did not contain at least one
closed pull request due to using closed pull requests as a base unit
of analysis.
2) Excluded repositories with less than three unique contributors
in order to ensure that the project has received some outside
contributions.
After this second phase of filtering, our sample included12,482
projects.
We used pull requests as a base unit of analysis. From these
12,482 projects, we extract all closed pull requests from the API.
As we were interested in the decision of whether or not to accept
a pull request, we excluded all open pull requests. In total, this
includes 659,501 pull requests across the 12,482 projects. For this
dataset, we also gathered information about each unique GitHub
user associated with the set of pull requests. This set of user
information includes 95,270 unique GitHub user accounts. We
also used the API to gather information on all issues and
comments for each repository.

3.3 Measures
From our created dataset, we generated contribution measures for
our analysis based on prior literature on GitHub, traditional open
source software communities, and online communities (see Table
1 for a descriptive summary of the measures).

3.3.1 Outcome Measure
Our main outcome measure was whether or not a pull request is
accepted. Pull request acceptance in this context means that the
code contributions included in the pull request were merged into
the project’s code base. Pull request acceptance is a dichotomous
variable.

3.3.2 Pull Request-level Measures
For our base level of measurement, we collected information
unique to each closed pull request in our dataset. Each signal for
the pull request represents a social or technical attribute about the
contribution that may factor into the acceptance decision.

3.3.2.1 Technical Contribution Norms
We use three measures to operationalize different dimensions of
valued technical contribution norms for a pull request.
Test Inclusion – This measure was a dichotomous variable
indicating whether or not the pull request included test cases.
From the prior work of Dabbish et al. [5] on GitHub, we know
that when core members evaluate pull requests, they look for the
inclusion of test cases as a signal of the thoroughness of the
contribution. To measure this, we looked at the file pathnames in
each pull request and looked for the word “test”. If the pull
request included such a pathname, then the pull request is labeled
as including tests. This is due to most test cases either residing in
a test folder (i.e. project/test/…) or the filenames including the
word “test” (i.e. test_numberformat.java). To verify, a simple
spot-check was performed on forty randomly chosen pull
requests, twenty labeled as having tests, twenty labeled as not
having tests. All checked pull requests were found to be correctly
labeled. Of course, this measure is probably conservative, with
unfound false negatives.
Commit Size – This measure is the number of lines changed in
the pull request. Along with number of files changed, we
included the number of lines changed in a pull request as a signal
of a pull request’s legibility. Pull requests that change large
portions of the code base at a time are much harder for project
managers to understand and evaluate.
Number of Files Changed – This measure is the number of files
changed in the pull request. Along with the commit size, we use
these measures to indicate how legible a particular pull request is.
Pull requests that touch a large number of files tend to be much
harder to understand and evaluate for project managers [19].

3.3.2.2 Social Connection
To represent two different dimensions of the social connections
in GitHub, we used a measure for social distance and another for
prior interaction.
Social Distance – This measure was a dichotomous variable
indicating whether or not the submitter follows the user that
closes the pull request. We use this as a proxy of the social
closeness between the submitter and the closer in a particular pull
request.
Prior Interaction – Prior work on GitHub by Dabbish et al. [5],
indicates that core members for a project, especially when
attempting to recruit new members, use prior contributions as a
signal of the trustworthiness of a contributor and contribution. To
measure prior interaction, we counted the number of events
before a particular pull request that the user has participated in for
this project. Events include participating in issues, pull requests,
and commenting on various GitHub artifacts.

Table 1. Descriptives of measures pre-transformation.

 Measure mean median stdev skew

Test Inclusion* 0.151 0.000 0.358 1.950
Commit Size
(lines) 1456 25.000 27799 61.876

Files Changed 13.265 2.000
165.46

0 67.691

Social Distance* 0.096 0.000 0.295 2.740

Prior Interaction 200.583 22.000
566.38

8 8.184

Comments 2.664 1.000 6.656 19.198

Followers 35.972 7.000
177.08

2 22.965
Collaborator
Status* 0.435 0.000 0.496 0.261

Repo Maturity** 2.104 1.956 1.188 0.568

Collaborators 20.203 8.000 42.808 6.063

Stars 1981 293 4095 2.977
Pull Req
Acceptance* 0.723 1.000 0.447 -0.999
*Dichotomous variables

 **In years as of July 17, 2013

360

3.3.2.3 Highly Discussed Contributions
Comments on Pull Request – Marlow et al. [19] found that
uncertain pull requests tended to require negotiation and/or
explanation. Pull requests with lots of comments also tended to
signal controversy [5]. To measure the level of discussion, we
counted the number of comments in the closed pull request.

3.3.3 User-level Measures
As each pull request has a submitting user that may submit
multiple pull requests to a project, we grouped pull requests by
the submitting GitHub user account and collected information
about each GitHub submitter.

3.3.3.1 Submitter’s General Community Standing
Followers – This measure is the number of followers a GitHub
user has at time of data collection. The number of followers a
GitHub user possesses is used as a signal of standing [5] within
the community. For example, users with lots of followers were
treated as local celebrities.

3.3.3.2 Submitter’s Status in Project
Collaborator Status – This signal is a dichotomous variable for
the user's collaborator status within the project. In GitHub, a
collaborator for a project has direct commit access to the
repository. Therefore, they do not need to perform the pull
request process in order to merge code contributions into the
project. However, interviews with GitHub users indicate that
many collaborators opt to create pull requests for code
contributions despite having commit status. Often, this is done to
allow other users to review changes before accepting the code
contribution.

3.3.4 Repository-level Measures
We further grouped the dataset by grouping each set of
submitters into a repository and collected information about each
repository.

3.3.4.1 Project Establishment
We used three different measures to represent three dimensions
of establishment for the project receiving the pull request is.
Repository Age – This measure is a continuous variable
representing the project's age how long a project has existed on
GitHub since the time of data collection. We use this as an
indicator of the repository's maturity.
Collaborators – This measure is the number of collaborators on a
project. We use the number of collaborators as a proxy for the
relative size of the development team involved in a particular
GitHub project.
Stars – This measure is a continuous variable for the number of
stars on a project. When evaluating projects, GitHub users make
use of the number of stars as a signal for community interest in
the project [5]. As stars were indications of attention from a user
to a particular project, more stars indicate more users interested in
the project. Measures such as the number of forks and the number
of contributors to a particular GitHub project were highly
correlated with this measure, so were omitted to avoid
collinearity.

4. RESULTS
Our analysis suggests that both technical and social contribution
measures are highly associated with acceptance. First, we
examine our hypotheses and how each predictor variable
associates with acceptance. We also consider factors that cut

across pull requests such as user-level and repository-level
measures. A summary of the models is presented in Table 2.
We report measure associations with contribution in odds ratios,
which are the increase or decrease of the odds of acceptance
occurring per "unit" of the measure. In this case, a "unit" of each
measure is one standard deviation from the log-transformed for
continuous variables or the presence of a dichotomous variable.

4.1 Analysis
Using these pull request-level, submitter-level, and repository-
level measures, we create a model that predicts the likelihood of
pull request acceptance. We fit a multi-level mixed effects
logistic regression model to our data because our outcome
variable (acceptance) is dichotomous and our dataset nested in
multiple levels. We chose a logistic regression approach in order
to better predict our dichotomous outcome variable. To account
for the three-level nesting of the dataset from pull requests to
users to repositories, we created a mixed model where our
contribution measures are fixed effects and the unique user and
repository intercepts are represented as random effects. We used
a R [24] package [2] that accounts for cross-classification of data,
as 28,880 out of 95,720 users appear in multiple projects in our
dataset. None of the measures had pairwise correlations above 0.6
suggesting no multicollinearity problems [7]. To ensure
normality, each of the continuous variables in the model was log
transformed and then centered such that the mean of each
measure is 0 and standard deviation is 1.

4.2 Pull Request-Level Measures
4.2.1 Technical Contribution Norms
H1: Contributions that follow technical contribution norms are
more likely to be accepted.
We tested H1 by examining the association of test case inclusion,
commit size, and files changed with contribution acceptance. The
inclusion of test cases was positively associated with pull request
acceptance, with acceptance likelihood increased by 17.1% when
tests are included. Lines changed had a stronger effect but
negative, with each unit of lines changed decreasing the chance
of acceptance by 26.2% compared to 7.3% with each unit of files
changed.
As we expect contributions that include test cases and are more
legible are more likely to be accepted, so we find support for H1.

4.2.2 Social Connection
H2: Contributions from submitters with a stronger social
connection to the project are more likely to be accepted.
We tested H2 by examining the association of social distance and
prior interaction with contribution acceptance. We find support
for H2 as both of our social connection measures were positively
associated with pull request acceptance. Our measure of social
distance had the strongest influence on likelihood of acceptance
as compared with other pull-request level factors, increasing
acceptance by 187% when the submitter follows the project
manager. Prior interaction was also positively associated with
acceptance, increasing acceptance likelihood by 35.6% per unit.

4.2.3 Highly Discussed Contributions
H3: Contributions with a high amount of discussion are less
likely to be accepted.
To test H3, we examined the association between pull request
comment count and acceptance. Pull requests with longer
discussion, as indicated by higher counts of comments, were less

361

likely to be accepted, supporting H3. This is our second strongest
effect among the pull request-level factors, with the likelihood of
acceptance decreasing by 54.6% with each unit of comment
count.

4.2.4 Decision-Making for Highly Discussed
Contributions
H4: Acceptance of highly discussed contributions will be
moderated by both social and technical factors.
To test H4, we added an interaction term to the model, interacting
number of comments with each pull request-level measure in
order to investigate how social and technical factors moderated
the decision-making process for highly discussed contributions.
We found that all five interactions with social and technical
factors were significant, indicating support for H4.
We provide charts detailing the direction of the interactions in
Figures 1, 2, and 3. The associations of test inclusion, number of
files, commit size, and social distance all significantly moderate
the influence of discussion on contribution acceptance, though
with a small effect. Prior interaction most strongly moderates the
relationship between discussion and acceptance, with number of
comments having almost no influence on acceptance for previous
contributors. We discuss later the implications of these

interactions for how evaluating highly discussed contributions
may differ from more standard contributions.

4.3 User-Level Measures
4.3.1 Submitter Status in General Community
H5: Contributions from submitters with a high status in the
general community are more likely to be accepted.
To test H5, we examined the association of follow count with
pull request acceptance. We find a positive association,
supporting H5. Having followers increases the likelihood of
acceptance by 18.1% per unit of followers. This suggests that
submitters with higher community standing are more likely to
have their pull requests accepted.

4.3.2 Submitter Status in Project
H6: Contributions from submitters that hold higher status in a
specific project are more likely to be accepted.
We tested H6 by examining the association of collaborator status
with contribution acceptance. Perhaps unsurprisingly, when
submitters with commit access choose to create pull requests
instead of directly merging code, their pull requests are more
likely to be accepted than non-collaborators, supporting H6.

Table 2. Multi-level mixed effects logistic model for pull request acceptance

 Model I Model II Model III Model IV

Pull Request Level
Pull +

Submitter
Level

 Pull +
Submitter +
Repo Level

 Factor Variable Odds Ratio Odds Ratio Odds Ratio Odds Ratio

Pull
Request

Level

(Intercept) 2.934 *** 2.898 *** 2.845 *** 3.925 ***

Technical
Contribution
Norms (H1)

Test Inclusion 1.059 *** 1.023 * 1.114 *** 1.171 ***

Commit Size 0.849 *** 0.834 *** 0.736 *** 0.738 ***

Number of Files Changed 1.165 *** 1.152 *** 0.970 *** 0.927 ***

Social
Connection (H2)

Social Distance 1.345 *** 1.461 *** 3.636 *** 2.870 ***

Prior Interaction 1.423 *** 1.362 *** 1.207 *** 1.356 ***
Highly Discussed

Contributions
(H3)

Comments 0.481 *** 0.480 *** 0.414 *** 0.454 ***

Decision-Making
for Highly
Discussed

Contributions
(H4)

Test Inclusion x Comments 1.057 *** 1.092 *** 1.106 ***

Commit Size x Comments 1.101 *** 1.166 *** 1.169 ***

Files Changed x Comments 1.017 *** 1.043 *** 1.035 ***
Social Distance x
Comments 0.806 *** 0.792 *** 0.796 ***

Prior Interaction x
Comments 1.106 *** 1.246 *** 1.142 ***

Submitte
r Level

Status in General
Community (H5) Followers 1.060 *** 1.181 ***

Status in Project
(H6) Collaborator Status 3.904 *** 1.636 ***

Repo
Level

Project
Establishment

(H7)

Repository Age 0.820 ***

Collaborators 0.954 **

Stars 0.648 ***

AIC: 633600 630879 506850 461077

362

Being a collaborator on a project increases the likelihood of
contributions being accepted by 63.6%.

4.4 Repository-Level Measures
4.4.1 Project Establishment
H7: Contributions to established projects are less likely to be
accepted.
We test H7 by examining the association of our project
establishment measures (the age of the project, number of users
with commit status, and popularity of the project) with
contribution acceptance. All three of our project establishment
dimensions have negative associations with pull request
acceptance, so we find support for H7. Number of collaborators,
used as a proxy for project team size, has the smallest influence
on acceptance likelihood out of the three establishment measures,
decreasing acceptance by 4.6% per unit of collaborator count.
Somewhat surprisingly, this suggests that project "size" does not
have as strong an influence on pull request acceptance as
compared with age or popularity. The older a project, used here
as a proxy for maturity, the less likely it is to accept pull requests,
with acceptance decreasing by 18.0% per unit of project age.
Popularity had the strongest negative influence on acceptance,
with projects 35.2% less likely to accept pull requests per unit of
increase in stars.

5. DISCUSSION
In this section, we summarize the results and discuss the
implications of the hypotheses in terms of prior literature.

5.1 Technical Norms and Social Connection
From conventional wisdom on open source software projects, we
expect to see some evidence for a "meritocracy", in that technical
contribution norms should reign over other signals when
considering contributions [26]. However, in the environment of
GitHub, which is both transparent and equipped with social
media functionality, we also expect contributors to make use of
the social connections that the environment makes salient. Our
analysis suggests that while following technical contribution
norms for pull requests is associated with acceptance, the social
connections behind pull requests have even stronger associations.
In terms of technical contribution norms, we found that pull
requests more consistent with community-wide pull request
practices like inclusion of test cases and small commit sizes [5]
were more likely to be accepted. Code contributions that did not
follow technical norms were less likely to be accepted, perhaps
due to the higher assessment costs required by the project
manager.
We also find that social connections increase likelihood of
contribution acceptance, even when controlling for compliance
with technical contribution norms. In traditional open source
software projects, contributors are often expected to participate in
more social aspects of the project such as participating in mailing
list technical discussions before making code contributions in
order to learn project-specific norms and ease socialization [17].
In the case of GitHub however, this expectation may be less
prevalent because the pull request system standardizes the
contribution process. The pull-request process also lowers the
barriers for contribution, meaning many developers will make
one-off contributions to projects or "drive-by commits" [23].
However, we still found that a contributor that has prior
interaction with a project also has a higher likelihood of pull
request acceptance. We also find that submitters socially closer to

project managers tend to have their contributions accepted. This
social distance association is also the strongest in the model.
Similar to evaluating technical contribution norms, stronger
social connections may indicate qualities such as trust, which
may lower the project manager's assessment cost. For example, if
the submitter is trusted to make good contributions, project
managers may be more lenient in their evaluations [23].
While both technical contribution norms and social connections
were associated with pull request acceptance, our measures for
social contribution had much stronger associations than our
technical contribution norm measures. One possible explanation
is that when project managers are evaluating pull requests, when
the evaluation cost is too high, they may decide to outright reject
the contribution. Whereas pull requests that follow technical
norms such as legible code changes and test cases make the pull
request

0.5

0.6

0.7

0.8

0.9

1

No Tests Has Tests
Ac

ce
pt

an
ce

Test Inclusion

Low
Discussion

Mid
Discussion

Hi
Discussion

Figure 1. Interaction plot of test inclusion and
contribution contention

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

No Follow Follows

Ac
ce

pt
an

ce

Social Distance

Low
Discussion
Mid
Discussion
Hi
Discussion

Figure 2. Interaction plot of social distance and
contribution contention

0.4
0.5
0.6
0.7
0.8
0.9

1

Ac
ce

pt
an

ce

Prior Interaction

Low
Discussion

Mid
Discussion

Hi
Discussion

Figure 3. Interaction plot of prior interaction and
contribution contention

(prior interaction values are standardized)

363

much easier to evaluate, a strong social connection between the
project manager and submitter may allow the project manager to
bypass much of the evaluation process. Pull requests from
unknown developers may be subject to much more thorough and
costly evaluations from project managers than pull requests from
known contributors [23]. For example, a familiar developer may
be expected to already have run the contribution through the test
suite, allowing for a project manager to bypass that phase of the
evaluation, increasing the likelihood of acceptance. Similarly, we
see that members of the project with commit rights, perhaps an
explicit form of trust, also have positive associations with
acceptance. This may be similar to the effect of familiarity in
distributed software development, where team familiarity is
associated with team performance, especially for geographically
dispersed teams (as many GitHub projects are) [9]. One
explanation for the familiarity finding is that teammates with high
familiarity know whom to contact for queries and resources,
making coordination much more efficient. Perhaps submitters
with a strong social connection also lower the coordination costs
required to use the contribution. For example, project managers
familiar with the submitter may not bother to look for project-
specific coding style norms, knowing that the submitter already
should know them. All of these factors that lower assessment
costs reduce the chances that flaws are found, or that the project
manager will opt to reject the pull request rather than perform and
expensive evaluation.
Future research should examine in more detail how technical and
social signals influence evaluation cost during pull request
acceptance. If technical norm signals are harder to evaluate, then
perhaps future collaborative software tools should focus on
lowering the evaluation cost of a software contribution. At the
same time, if developers are using social signals to evaluate
contributions, then perhaps those signals should be made more
visible during evaluation tasks, assuming that these signals are
optimal for decision-making. Future research should also
examine whether these evaluation decisions are optimal or what
leads to optimal acceptance decisions.

5.2 Decision-Making and Highly Discussed
Contributions
Next to social distance, the amount of discussion around a pull
request had the strongest influence on likelihood of acceptance.
The more highly discussed the contribution, the less likely the
contribution would be accepted. This by itself is not too
surprising, given the high degree of uncertainty present in such
pull requests [19]. However, we also hypothesized that highly
discussed pull requests differ in both the tone of the discussion
and the degree of uncertainty in the contribution being discussed.
These differences in the nature of the discussion around
evaluating a pull request also reflect differences in the decision-
making process for project managers. When discussing a pull
request in order to evaluate the value of the contribution, project
managers may be using different kinds of information. We found
in our model (see Table 2) that both technical contribution norms
and social connection measures moderated the effect of
discussion on contributions.
For highly discussed contributions, our social and technical pull
request-level measures moderate the negative association of
discussion amount on acceptance. For most of our factors,
however, regardless of being social or technical in nature, the
moderating effect is too small to affect the very negative
influence of having a large amount of discussion in a
contribution. In Figure 1 for example, the negative effect of high

discussion overwhelms the positive technical effect of test
inclusion, reducing the likelihood of acceptance by about 30%
regardless of test inclusion. Even for the variable with the largest
association with acceptance, social distance, having a high
amount of discussion still reduces the likelihood of acceptance by
about 25% regardless of whether or not following occurs as seen
in Figure 2. This small moderating effect suggests that for most
pull requests, project managers are much less willing to accept
the contribution, regardless of whether or not technical
contribution norms are followed or a social connection of the
submitter to the project manager exists. This may indicate that
regardless of the tone of the discussion or nature of the
contribution, high amounts of discussion on a pull request
indicates a high degree of uncertainty for the value of the
contribution.
However, a submitter's prior interaction on the project
significantly changes the influence of discussion on acceptance as
seen in Figure 3. Surprisingly, there is a positive association
between discussion and acceptance likelihood for participants
with prior interaction. This may indicate that when experienced
submitters are working on a project, the nature of the discussions
around their pull requests is different in some way than
submitters who do not have this prior experience. Discussions
where the submitter has high amounts of prior interaction may be
less focused on evaluating a contribution's value and more
focused on optimizing the code. Conversely, the discussion
around a contribution from a submitter with no prior interaction
on the project may focus more on evaluating whether the pull
contribution is worth accepting. For example, a submitter with no
prior interaction may be unaware of a project's submission
practices and the resulting discussion would be focused on
ensuring the pull request matches the project's standards.
Interestingly, the moderation effect of prior interaction is at odds
with the effect of social distance despite both variables being
used for our social connection measure in the analysis model.
This may suggest that when discussing contributions, project
managers will turn to prior interaction rather than social distance
as a signal to use during evaluation of pull requests. Perhaps this
occurs because prior interactions are a more trustworthy signal
than the social distance signal of the submitter following the
project manager. To demonstrate prior interaction, a user has to
actively participate in discussions, bug reports, and other forms of
contribution on the project. Prior interaction may act as an
assessment signal, where the signal of prior interactions cannot
easily be generated without actual participation [6]. Prior
interaction is a reliable signal of social connection because
participation cannot be easily faked. On the other hand, social
distance via following may indicate a social connection between
two users through convention. This signal is less reliable because
a submitter can follow a project manager without actually
creating a social connection with the project manager. When
discussing how to evaluate contributions, the convention of
following users does not replace familiarity built from actual
prior interaction.
Future research should examine how we can design tools that
assist in deliberation by highlighting certain information. Future
tool design may assist developers during software change
evaluation discussions by making certain signals more or less
visible. Future tools may even dynamically change the visibility
of different signals depending on the tone of the discussion.

364

5.3 Audience Pressures
While social and technical features of pull requests had important
associations with acceptance, our model also suggests that the
type of submitter and the type of project that the pull request is
submitted to also influences acceptance likelihood.
Pull requests from submitters who have commit rights, known as
collaborators in GitHub, were associated with acceptance. Pull
requests from collaborators seem to be special cases of
contribution because these users are not required to undergo the
pull request process in order to have their changes merged into
the project, unlike other developers.
Well-established projects were negatively associated with
acceptance on all three dimensions. In particular, the popularity
of a repository has the strongest negative association out of the
three. Number of stars, our proxy for project popularity, is used
by members of the GitHub community as a signal for project
quality, which project managers are aware of [5].
The contrasting associations between popular projects and
collaborators may indicate that audience pressure is a factor when
project managers evaluate pull requests. For popular projects, the
transparent nature of GitHub means project managers are aware,
at least in part, of the identity of users of their project [5].
Knowing that hundreds or thousands of users, some highly
visible, depend on a particular project may discourage project
managers from accepting risky or uncertain code contributions.
Conversely, collaborators, who possess the ability to accept pull
requests into the project, may be immune to these audience
pressures.
The effect of audience pressure on software contribution
evaluation is not well understood. Future research may
investigate more thoroughly how audience pressures affect both
contributors and core members of projects. Signals used to
evaluate contributions may differ depending on whether or not
core members feel pressure from the audience. For example, core
members may be much more concerned about managing
uncertainty when they are aware that millions of potential users
are watching and depending on the project being stable.

5.4 Limitations
One of the main limitations of our study is that most of our data
is of a cross-sectional nature. At the same time, some of our
measures are more robust to reverse-causality because of timing
inherent in the pull request process. Prior interaction, test
inclusion, and number of lines and files changed, are all variables
whose value is determined prior to any consideration of
acceptance of the pull request. Other variables, however, are
cross-sectional at the time of data collection, such as follower
count. Without performing a true longitudinal analysis, we cannot
be certain about the direction of causality for these latter
variables using our dataset. Future work should perform
longitudinal analyses on contribution measures in order to make
stronger inferences about causality.

6. CONCLUSION
In this work we examined how social and technical information
in the transparent open source software environment of GitHub is
used to make contribution decisions. We created a statistical
model analyzing the association of different pull request,
submitter, and repository measures of contributions with the
likelihood of the contribution being accepted. We found that
project managers made use of information involving both the
technical contribution practices of a pull request and the strength

of the social connection between the submitter and project
manager when evaluating pull requests. Highly discussed pull
requests were much less likely to be accepted, however, the
submitter's prior interaction in the project moderated this effect.
Well-established projects were more conservative when
evaluating pull requests, perhaps due to audience pressures. Our
findings inform how software developers and project managers
make use of information in social work environments such as
GitHub and imply a variety of ways that social features in work
environments can support software development. Future research
may investigate how developers use signals in other work
environments, transparent or not. Future tool design may use our
findings to identify signals to make more visible for project
managers when making evaluation decisions. Our findings may
also inform how project managers should change their evaluation
policies based on what signals are important.

7. ACKNOWLEDGMENTS
This material is supported by the Center for the Future of Work at
Carnegie Mellon University's Heinz College and by the National
Science Foundation under Grant No. IIS1111750.

8. REFERENCES
[1] 10 Million Repositories - GitHub:

https://github.com/blog/1724-10-million-repositories.
[2] Bates, D., Maechler, M. and Bolker, B. 2013. lme4.0: Linear

mixed-effects models using S4 classes.
[3] Bryant, S.L., Forte, A. and Bruckman, A. 2005. Becoming

Wikipedian: transformation of participation in a
collaborative online encyclopedia. Proceedings of the 2005
international ACM SIGGROUP conference on Supporting
group work (New York, NY, USA, 2005), 1–10.

[4] Crowston, K., Wei, K., Howison, J. and Wiggins, A. 2008.
Free/Libre open-source software development: What we
know and what we do not know. ACM Comput. Surv. 44, 2
(Mar. 2008), 7:1–7:35.

[5] Dabbish, L., Stuart, C., Tsay, J. and Herbsleb, J. 2012.
Social coding in GitHub: transparency and collaboration in
an open software repository. Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work (New
York, NY, USA, 2012), 1277–1286.

[6] Donath, J. 2005. Signals, truth, and design. MIT Press.
[7] Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G.,

Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B.,
Leitão, P.J. and others 2013. Collinearity: a review of
methods to deal with it and a simulation study evaluating
their performance. Ecography. 36, 1 (2013), 27–46.

[8] Ducheneaut, N. 2005. Socialization in an Open Source
Software Community: A Socio-Technical Analysis.
Computer Supported Cooperative Work (CSCW). 14, 4
(2005), 323–368.

[9] Espinosa, J.A., Slaughter, S.A., Kraut, R.E. and Herbsleb,
J.D. 2007. Familiarity, Complexity, and Team Performance
in Geographically Distributed Software Development.
Organization Science. 18, 4 (2007), 613–630.

[10] Foundation/Charter - GNOME Wiki:
https://wiki.gnome.org/Foundation/Charter. Accessed:
2013-08-31.

[11] GitHub Archive: http://www.githubarchive.org/. Accessed:
2013-08-31.

365

[12] GitHub: http://github.com. Accessed: 2013-08-21.
[13] Hars, A. and Ou, S. 2002. Working for Free? Motivations

for Participating in Open-Source Projects. Int. J. Electron.
Commerce. 6, 3 (Apr. 2002), 25–39.

[14] How the ASF works:
http://www.apache.org/foundation/how-it-works.html.
Accessed: 2013-08-31.

[15] Iriberri, A. and Leroy, G. 2009. A life-cycle perspective on
online community success. ACM Comput. Surv. 41, 2 (Feb.
2009), 11:1–11:29.

[16] Kraut, R.E. and Resnick, P. 2012. Building Successful
Online Communities: Evidence-Based Social Design. MIT
Press.

[17] Von Krogh, G., Spaeth, S. and Lakhani, K.R. 2003.
Community, joining, and specialization in open source
software innovation: a case study. Research Policy. 32, 7
(Jul. 2003), 1217–1241.

[18] Lakhani, K.R. and Wolf, R. 2005. Why Hackers Do What
They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects. Perspectives on Free
and Open Source Software. J. Feller, B. Fitzgerald, S.
Hissam, and K.R. Lakhani, eds. MIT Press. 3–22.

[19] Marlow, J., Dabbish, L. and Herbsleb, J. 2013. Impression
formation in online peer production: activity traces and
personal profiles in github. Proceedings of the 2013
conference on Computer supported cooperative work (New
York, NY, USA, 2013), 117–128.

[20] Mockus, A., Fielding, R.T. and Herbsleb, J.D. 2002. Two
case studies of open source software development: Apache
and Mozilla. ACM Trans. Softw. Eng. Methodol. 11, 3 (Jul.
2002), 309–346.

[21] Mozilla - Governance - mozilla.org:
http://www.mozilla.org/en-US/about/governance/. Accessed:
2013-08-31.

[22] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K. and
Ye, Y. 2002. Evolution patterns of open-source software
systems and communities. Proceedings of the International
Workshop on Principles of Software Evolution (New York,
NY, USA, 2002), 76–85.

[23] Pham, R., Singer, L., Liskin, O., Figueira Filho, F. and
Schneider, K. 2013. Creating a shared understanding of
testing culture on a social coding site. Proceedings of the
2013 International Conference on Software Engineering
(Piscataway, NJ, USA, 2013), 112–121.

[24] R Core Team 2013. R: A Language and Environment for
Statistical Computing.

[25] Roberts, J.A., Hann, I.-H. and Slaughter, S.A. 2006.
Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A
Longitudinal Study of the Apache Projects. Management
Science. 52, 7 (2006), 984–999.

[26] Scacchi, W. 2007. Free/Open Source Software Development:
Recent Research Results and Methods. Architectural Issues.
M. V Zelkowitz, ed. Elsevier. 243–295.

[27] Shah, S.K. 2006. Motivation, Governance, and the Viability
of Hybrid Forms in Open Source Software Development.
Manage. Sci. 52, 7 (Jul. 2006), 1000–1014.

[28] Stewart, K.J. and Gosain, S. 2006. The moderating role of
development stage in free/open source software project
performance. Software Process: Improvement and Practice.
11, 2 (2006), 177–191.

366

